首页> 外文学位 >Microelectromechanical and microfluidic systems for scanning probe lithography.
【24h】

Microelectromechanical and microfluidic systems for scanning probe lithography.

机译:用于扫描探针光刻的微机电和微流体系统。

获取原文
获取原文并翻译 | 示例

摘要

The emerging field of scanning probe lithography (SPL) has enabled scientific research down to an unprecedentedly small scale. Direct write SPL uses the scanning probe in an atomic force microscope (AFM) to generate chemical or biological patterns on a substrate. It offers a unique combination of performance advantages including nanoscale resolution, direct molecular transfer, pattern flexibility, and material versatility. It has been widely used for nanoscopic pattern generation and enabled many exciting nanotechnology applications ranging from molecular assembly to nanomaterial synthesis to nanoelectronic fabrication.; This work addresses two major challenges faced by traditional single-probe SPL technology---lithography throughput and probe coating technique. System-level improvements of SPL have been successfully achieved. First, micromachined, thermally actuated cantilever probe arrays are developed to improve the throughput and flexibility of SPL. Multiple distinct patterns have been generated simultaneously with sub-50-nm line width in dip pen nanolithography (DPN) mode. Then, development of scanning probe contact printing (SPCP) technology and multifunctional probe arrays has expanded the capability of conventional single-functional SPL and demonstrated an excellent example of a highly integrated scanning probe device for pattern generation in DPN and SPCP modes and pattern inspection in AFM and LFM modes. In addition, the development of integrated microfluidic inking chips for chemical ink handling and SPL probe treatment further enhances the power of arrayed scanning probes. The inking chip can potentially coat an array of SPL tips with different inks simultaneously for multi-ink lithography.
机译:扫描探针光刻(SPL)的新兴领域使科学研究的规模降到了前所未有的小规模。直接写入SPL使用原子力显微镜(AFM)中的扫描探针在基板上生成化学或生物图案。它提供了多种性能优势的独特组合,包括纳米级分辨率,直接分子转移,图案灵活性和材料多功能性。它已被广泛用于纳米图案的产生,并实现了许多激动人心的纳米技术应用,从分子组装到纳米材料合成再到纳米电子制造。这项工作解决了传统的单探针SPL技术面临的两个主要挑战-光刻产量和探针涂层技术。已成功实现SPL的系统级改进。首先,开发了微加工的热驱动悬臂探针阵列,以提高SPL的通量和灵活性。在蘸水笔纳米光刻(DPN)模式下,同时以低于50 nm的线宽生成了多个不同的图案。然后,扫描探针接触印刷(SPCP)技术和多功能探针阵列的发展扩展了常规单功能SPL的功能,并展示了高度集成的扫描探针设备的绝佳示例,该设备可用于DPN和SPCP模式下的图案生成以及SNP中的图案检查AFM和LFM模式。此外,用于化学墨水处理和SPL探针处理的集成微流体着墨芯片的开发进一步增强了阵列扫描探针的功能。上墨芯片可能会同时用不同的墨水涂布一系列SPL笔尖,以进行多墨水平版印刷。

著录项

  • 作者

    Wang, Xuefeng.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 143 p.
  • 总页数 143
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号