首页> 外文学位 >Materials assembly using molecular recognition and redox-modulated recognition.
【24h】

Materials assembly using molecular recognition and redox-modulated recognition.

机译:使用分子识别和氧化还原调制识别的材料组装。

获取原文
获取原文并翻译 | 示例

摘要

The integration of non-covalent interactions in materials provides a direct mechanism to customize materials properties to specific applications and create novel nanostructures. Combining self-assembly with non-covalent interactions serves as a powerful tool in the creation of complex macromolecular structures with thermodynamically reversible contacts. With a host of non-covalent interactions available (e.g. dative bonding, hydrogen bonding, electrostatic pairings, pi-stacking), tailoring the size and stability of self-assembled materials can be achieved through choice of interaction. This thesis describes two distinctive areas of research employing a rational combination of self-assembly and non-covalent interactions: (1) the synthesis and self-assembly of recognition unit functionalized Polyhedral Oligomeric Silsesquioxane (POSS) units and (2) the study of redox-modulated, molecular recognition in macromolecular systems.; POSS units have long been employed as covalent additives in both polymeric and ceramic-based systems. Now, they have found alternative uses as non-covalent modifiers in multiple supramolecular systems. POSS units inherently feature a variety of attributes, which make them attractive as molecular recognition elements. These three-dimensional, nanoscale "building blocks" (∼0.6 nm inner silicate core) can easily be functionalized with a variety of recognition units. Through synthetic modification we were able to create a versatile component for non-covalent self-assembly with defined spacial orientations. To that end, recognition unit functionalized POSS units have been shown to serve as potent non-covalent modifiers for applications including surface modification, nanoparticle self-assembly, thermal enhancement in polymeric systems, and potential cellular delivery systems.; Modulating non-covalent interactions via the reduction or oxidation of a molecule serves as an effective means in tuning the formation of supramolecular assemblies. Initial solution-based studies of both non-specific (urea-quinone) and specific, three-point (flavin-diamidopyridine) hydrogen bonding systems have been successful in understanding the complex behaviors, which govern redox-modulated molecular recognition. This understanding led to the incorporation of electrochemically tunable "host-guest" interactions on polymers and surfaces. Several interesting behaviors ranging from reversible redox-modulated recognition to induced proton transfer processes were observed and the ongoing focus of this research seeks to combine materials applications and redox-modulated recognition to create responsive, electrochemically tunable polymers and surfaces.
机译:材料中非共价相互作用的整合提供了一种直接的机制,可以针对特定应用定制材料特性并创建新颖的纳米结构。将自组装与非共价相互作用结合起来可作为创建具有热力学可逆接触的复杂大分子结构的有力工具。通过使用大量非共价相互作用(例如固定键,氢键,静电配对,π堆积),可以通过选择相互作用来调整自组装材​​料的尺寸和稳定性。本论文描述了两个独特的研究领域,它们采用自组装和非共价相互作用的合理组合:(1)识别单元功能化的多面体低聚倍半硅氧烷(POSS)单元的合成和自组装,以及(2)氧化还原的研究大分子系统中的调节分子识别;长期以来,POSS单元已在聚合物和陶瓷基体系中用作共价添加剂。现在,他们发现了在多种超分子系统中作为非共价修饰剂的替代用途。 POSS单元固有地具有多种属性,这使其成为分子识别元件具有吸引力。这些三维,纳米级的“构建基块”(内部硅酸盐核芯约为0.6 nm)可以很容易地通过各种识别单元进行功能化。通过合成修改,我们能够创建具有通用空间的非共价自组装通用组件。为此,已表明识别单元功能化的POSS单元可作为有效的非共价修饰剂,用于包括表面修饰,纳米粒子自组装,聚合物系统中的热增强和潜在的细胞递送系统在内的应用。通过分子的还原或氧化来调节非共价相互作用是调节超分子组装体形成的有效手段。最初基于溶液的非特异性(尿素-醌)和特异性三点(黄素-二氨基吡啶)氢键体系的研究已成功理解了复杂行为,这些行为决定了氧化还原调节的分子识别。这种理解导致在聚合物和表面上引入电化学可调的“主客体”相互作用。从可逆的氧化还原调制识别到诱导的质子转移过程,观察到了几种有趣的行为,并且本研究的持续重点是寻求结合材料应用和氧化还原调制的识别以创建响应性的,电化学可调的聚合物和表面。

著录项

  • 作者

    Carroll, Joseph B.;

  • 作者单位

    University of Massachusetts Amherst.;

  • 授予单位 University of Massachusetts Amherst.;
  • 学科 Chemistry Organic.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 207 p.
  • 总页数 207
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 有机化学 ; 工程材料学 ;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号