首页> 外文学位 >Binary classification with adiabatic quantum optimization.
【24h】

Binary classification with adiabatic quantum optimization.

机译:绝热量子优化的二进制分类。

获取原文
获取原文并翻译 | 示例

摘要

We study the problem of supervised binary classification from the perspective of deploying adiabatic quantum optimization in training. A vast body of prior academic work consisting of both theoretical and numerical studies has indicated that quantum technology promises to provide computational power that may be fundamentally superior to any classical computing methods. Given the abundance of NP-hard optimization problems that naturally arise in learning, it is clear that machine learning can immensely benefit from such an optimization tool.;We describe a series of increasingly complex designs that result in computationally hard training problems of combinatorial nature. In return for accepting classical computational hardness, we retain theoretical properties such as maximal sparsity and robustness to label noise, which are otherwise sacrificed by convex methods for the sake of computational efficiency and sound theoretical footing. In order to be compatible with emerging quantum hardware technology, we formalize the training problem as quadratic unconstrained binary optimization. Our initial investigations focus on a simple training formulation with non-convex regularization that conforms to the architecture of existing quantum hardware and makes frugal use of a limited number of available physical qubits. Next, we extend this baseline formulation to a scalable algorithm, QBoost, which is able to train incrementally large-scale classifiers on data sets of practical interest. Further, we derive another algorithm, TotalQBoost, as a theoretically motivated totally corrective boosting algorithm with cardinality penalization that also makes use of quantum optimization. Both QBoost and TotalQBoost perform explicit cardinality regularization, which is the only known way of achieving maximal sparsity in the trained classifiers. We apply QBoost and TotalQBoost to three different real-world computer vision problems and make use of a quantum processor for solving the sequence of discrete optimization problems generated by one of them. Finally, we study a learning formulation with convex regularization and a non-convex loss function, q-loss, specifically designed for robust supervised learning in the presence of label noise as it occurs in practice. For compatibility with quantum hardware we derive the corresponding quadratic binary problem via variational approximation. For all proposed algorithms we compare results on a variety of popular synthetic and natural data sets against a rich selection of existing rival learning formulations.
机译:我们从训练中采用绝热量子优化的角度研究有监督的二元分类问题。既有理论研究又有数值研究的大量先前学术著作表明,量子技术有望提供可能从根本上优于任何经典计算方法的计算能力。鉴于在学习中自然会出现大量的NP硬优化问题,很显然,机器学习可以从这种优化工具中受益匪浅。我们描述了一系列日益复杂的设计,这些设计导致了组合性质的计算困难训练问题。作为接受经典计算硬度的回报,我们保留了理论上的特性,例如最大的稀疏性和标记噪声的鲁棒性,否则,这些凸出方法会为了计算效率和合理的理论基础而牺牲这些特性。为了与新兴的量子硬件技术兼容,我们将训练问题形式化为二次无约束二进制优化。我们的初步研究集中在具有非凸正则化的简单训练公式上,该公式符合现有量子硬件的体系结构,并且节俭地使用了有限数量的可用物理量子位。接下来,我们将该基线公式扩展为可扩展算法QBoost,该算法能够在实际感兴趣的数据集上训练大规模分类器。此外,我们推导了另一种算法TotalQBoost,作为具有基数罚分的理论上有动机的完全校正增强算法,该算法也利用了量子优化。 QBoost和TotalQBoost都执行显式基数正则化,这是在经过训练的分类器中实现最大稀疏性的唯一已知方法。我们将QBoost和TotalQBoost应用于三个不同的现实世界计算机视觉问题,并使用量子处理器来解决其中一个问题所产生的离散优化问题的序列。最后,我们研究了一种具有凸正则化和非凸损失函数q-loss的学习公式,该函数专门设计用于在实际发生标签噪声的情况下进行鲁棒的有监督学习。为了与量子硬件兼容,我们通过变分近似推导了相应的二次二进制问题。对于所有提出的算法,我们将各种流行的合成和自然数据集上的结果与现有竞争对手学习公式的大量选择进行比较。

著录项

  • 作者

    Denchev, Vasil S.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Computer Science.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 225 p.
  • 总页数 225
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号