首页> 外文学位 >The evolution of solar sigmoidal active regions.
【24h】

The evolution of solar sigmoidal active regions.

机译:太阳乙状结肠活性区的演变。

获取原文
获取原文并翻译 | 示例

摘要

The formation, evolution and eruption of solar active regions is a main theme in solar physics. Ultimately the goal is predicting when, where and how an eruption will occur, which will greatly aid space weather forecasting. Special kinds of S-shaped active regions (sigmoids) facilitate this line of research, since they provide conditions that are easier to disentangle and have a high probability for erupting as flares and/or coronal mass ejections (CME). Several theories have been proposed for the formation, evolution, and eruption of solar active regions. Testing these against detailed models of sigmoidal regions can provide insight into the dominant mechanisms and conditions required for eruption. This thesis explores the behavior of solar sigmoids via both observational and magnetic modeling studies. Data from the most modern space-based solar observatories are utilized in addition to state-of-the-art three-dimensional data-driven magnetic field modeling to gain insight into the physical processes controlling the evolution and eruption of solar sigmoids. We use X-ray observations and the magnetic field models to introduce the reader to the underlying magnetic and plasma structure defining these regions. By means of a large comprehensive observational study we investigate the formation and evolution mechanism. Specifically, we show that flux cancellation is a major mechanism for building the underlying magnetic structure associated with sigmoids, namely magnetic flux ropes. We make use of topological analysis to describe the complicated magnetic field structure of the sigmoids. We show that when data-driven models are used in sync with MHD simulations and observations we can arrive at a consistent picture of the scenario for CME onset, namely the positive feedback between reconnection at a generalized X-line and the torus instability. In addition we show that topological analysis is of great use in analyzing the post-eruption flare- and CME-associated observational features. Such analysis is used to extend the standard 2D flare/CME models to 3D and to find potentially large implications of topology to understanding 3D reconnection and the seed populations of energetic particles in CMEs.
机译:太阳活动区的形成,演化和喷发是太阳物理学的主要主题。最终目标是预测爆发的时间,地点和方式,这将大大有助于空间天气预报。特殊类型的S形活动区域(S型曲线)促进了这一研究领域,因为它们提供了更容易解开的条件,并且由于耀斑和/或日冕物质抛射(CME)而极有可能爆发。已经提出了一些关于太阳活动区的形成,演化和喷发的理论。根据S形区域的详细模型进行测试,可以洞悉喷发所需的主要机制和条件。本文通过观测和磁学模拟研究了太阳乙状结肠的行为。除了最先进的三维数据驱动的磁场建模之外,还利用了来自最现代的基于太空的太阳观测站的数据,以深入了解控制太阳乙状结肠的演化和喷发的物理过程。我们使用X射线观察和磁场模型向读者介绍定义这些区域的潜在磁性和等离子体结构。通过大量的综合观测研究,我们研究了其形成和演化机理。具体而言,我们表明,磁通抵消是构建与S型相关的基础磁性结构(即磁通绳)的主要机制。我们利用拓扑分析来描述乙状结肠的复杂磁场结构。我们表明,将数据驱动的模型与MHD模拟和观察结果同步使用时,我们可以得出CME发作情况的一致图景,即广义X线重新连接与环面不稳定性之间的正反馈。此外,我们表明,拓扑分析在分析爆发后耀斑和CME相关的观测特征方面非常有用。此类分析用于将标准2D耀斑/ CME模型扩展到3D,并发现拓扑结构的潜在重大含义,以了解3D重新连接和CME中高能粒子的种子种群。

著录项

  • 作者单位

    Boston University.;

  • 授予单位 Boston University.;
  • 学科 Physics Astronomy and Astrophysics.;Physics Astrophysics.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 361 p.
  • 总页数 361
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号