首页> 外文学位 >Three-Dimensional Imaging of the Local Structure of Materials at Atomic Resolution by Electron Tomography.
【24h】

Three-Dimensional Imaging of the Local Structure of Materials at Atomic Resolution by Electron Tomography.

机译:通过电子断层扫描以原子分辨率对材料局部结构进行三维成像。

获取原文
获取原文并翻译 | 示例

摘要

Electron tomography was originally developed in 1968, and has been primarily applied to determine the three-dimensional (3D) structure of biological systems. In the last decade, the application of electron tomography in materials science and nanoscience has revived due to the utilization of scanning transmission electron microscopy (STEM) in the high-angle annular dark-field (HAADF) mode, and a highest resolution of ∼1 nm3 has been achieved. However, improving the resolution from ∼1 nm 3 to the atomic level remains a challenging task, which requires new tomographic reconstruction algorithms, better projection alignment methods, state-of-the-art STEM instruments, and more accurate data-acquisition procedures. In this thesis, important progress has been made in all these four areas. First, a novel tomographic method, termed equally sloped tomography (EST), was developed and allows the 3D image reconstruction of tilt series with a limited number projections and a "missing wedge" (i.e. specimens cannot usually be tilted beyond +/-70°). Second, an alignment method which can be used to align the projections of a tilt series at atomic-level resolution was developed based on center of mass. Finally, by using a Titan 80-300 STEM instrument at the California NanoSystems Institute, UCLA, more accurate data acquisition procedures were developed and a number of tomographic tilt series of atomic resolution projections from different nanoparticles have been obtained. With all these combinations, the 3D structure of a 10 nm gold nanoparticle was determined at 2.4 A resolution, the highest resolution ever achieved in any general tomography method. More recently, this novel electron tomography method has been applied to observe nearly all the atoms in a Pt nanoparticle, and imaged for the first time the 3D core structure of edge and screw dislocations at atomic resolution. Furthermore, through numerical simulations the feasibility of determining the 3D atomic structure of amorphous materials by the Electron Tomography method has been demonstrated.
机译:电子断层扫描技术最初是在1968年开发的,主要用于确定生物系统的三维(3D)结构。在过去的十年中,由于在高角度环形暗场(HAADF)模式下使用扫描透射电子显微镜(STEM)且分辨率最高约为1,因此电子断层扫描在材料科学和纳米科学中的应用得以恢复。 nm3已经实现。然而,将分辨率从〜1 nm 3提高到原子级仍然是一项艰巨的任务,这需要新的层析成像重建算法,更好的投影对准方法,最新的STEM仪器以及更准确的数据采集程序。本文在这四个领域都取得了重要进展。首先,开发了一种新颖的层析成像方法,称为等斜层析成像(EST),该方法可以对倾斜系列的3D图像进行重建,使其具有有限的投影数量和“缺失楔形”(即,样品通常不能倾斜超过+/- 70° )。其次,基于质心,开发了一种可用于以原子级分辨率对准倾斜序列的投影的对准方法。最后,通过使用加州大学洛杉矶分校加利福尼亚纳米系统研究所的Titan 80-300 STEM仪器,开发了更准确的数据采集程序,并获得了来自不同纳米颗粒的许多层析成像倾斜系列的原子分辨率投影。通过所有这些组合,可以在2.4 A的分辨率下确定10 nm金纳米粒子的3D结构,这是任何常规层析成像方法所能达到的最高分辨率。最近,这种新颖的电子断层扫描方法已应用于观察Pt纳米颗粒中的几乎所有原子,并首次以原子分辨率对边缘和螺钉位错的3D核心结构成像。此外,通过数值模拟证明了通过电子断层扫描法确定非晶态材料的3D原子结构的可行性。

著录项

  • 作者

    Zhu, Chun.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Physics General.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 142 p.
  • 总页数 142
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号