首页> 外文学位 >Atomistic Simulation of Non-Equilibrium Phenomena in Hypersonic Flows.
【24h】

Atomistic Simulation of Non-Equilibrium Phenomena in Hypersonic Flows.

机译:高超声速流中非平衡现象的原子模拟。

获取原文
获取原文并翻译 | 示例

摘要

The goal of this work is to model the heterogeneous recombination of atomic oxygen on silica surfaces, which is of interest for accurately predicting the heating on vehicles traveling at hypersonic speeds. This is accomplished by creating a finite rate catalytic model, which describes recombination with a set of elementary gas-surface reactions. Fundamental to a description of surface catalytic reactions are the in situ chemical structures on the surface where recombination can occur. Using molecular dynamics simulations with the Reax GSISiO potential, we find that the chemical sites active in direct gas-phase reactions on silica surfaces consist of a small number of specific structures (or defects). The existence of these defects on real silica surfaces is supported by experimental results and the structure and energetics of these defects have been verified with quantum chemical calculations. The reactions in the finite rate catalytic model are based on the interaction of molecular and atomic oxygen with these defects. Trajectory calculations are used to find the parameters in the forward rate equations, while a combination of detailed balance and transition state theory are used to find the parameters in the reverse rate equations. The rate model predicts that the oxygen recombination coefficient is relatively constant at T (300-1000 K), in agreement with experimental results. At T > 1000 K the rate model predicts a drop off in the oxygen recombination coefficient, in disagreement with experimental results, which predict that the oxygen recombination coefficient increases with temperature. A discussion of the possible reasons for this disagreement, including non-adiabatic collision dynamics, variable surface site concentrations, and additional recombination mechanisms is presented. This thesis also describes atomistic simulations with Classical Trajectory Calculation Direction Simulation Monte Carlo (CTC-DSMC), a particle based method for modeling non-equilibrium rarefied gas flows that employs trajectory calculations to determine the outcome of molecular collisions. We compare CTC-DSMC to direct molecular dynamics calculations for one-dimensional shocks, where exact agreement between the two methods is demonstrated. We also discuss a number of topics important in CTC-DSMC simulations, including GPU enabled acceleration, a preliminary algorithm for modeling three-body collisions, and characterizing high temperature rovibrational effects.
机译:这项工作的目的是对二氧化硅表面原子氧的非均相重组进行建模,这对于准确预测以超音速行驶的车辆的热量非常重要。这是通过创建有限速率催化模型来完成的,该模型描述了与一组基本气体表面反应的重组。表面催化反应描述的基础是表面可能发生重组的原位化学结构。使用具有Reax GSISiO势的分子动力学模拟,我们发现在二氧化硅表面上直接气相反应中活跃的化学位点由少量特定结构(或缺陷)组成。实验结果支持了这些缺陷在真实二氧化硅表面上的存在,并且这些缺陷的结构和能量已经通过量子化学计算得到了验证。有限速率催化模型中的反应基于分子和原子氧与这些缺陷的相互作用。轨迹计算用于查找正向速率方程中的参数,而详细平衡和过渡状态理论的组合用于查找反向速率方程中的参数。速率模型预测氧复合系数在T(300-1000 K)处相对恒定,与实验结果一致。在T> 1000 K时,速率模型预测氧复合系数下降,这与实验结果不一致,后者预测氧复合系数随温度增加。讨论了引起这种分歧的可能原因,包括非绝热碰撞动力学,可变的表面位点浓度和其他重组机制。本文还介绍了使用经典轨迹计算方向模拟蒙特卡洛(CTC-DSMC)进行的原子模拟,这是一种基于粒子的非平衡稀薄气体流建模方法,该方法利用轨迹计算来确定分子碰撞的结果。我们将CTC-DSMC与一维冲击的直接分子动力学计算进行了比较,其中证明了两种方法之间的确切一致性。我们还将讨论在CTC-DSMC仿真中很重要的许多主题,包括GPU加速,用于模拟三体碰撞并表征高温旋转效应的初步算法。

著录项

  • 作者

    Norman, Paul Erik.;

  • 作者单位

    University of Minnesota.;

  • 授予单位 University of Minnesota.;
  • 学科 Engineering Aerospace.;Physics Molecular.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 160 p.
  • 总页数 160
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号