首页> 外文学位 >Sustainable mining-solving the problem of chalcopyrite treatment/processing-leaching, solvent extraction & flotation.
【24h】

Sustainable mining-solving the problem of chalcopyrite treatment/processing-leaching, solvent extraction & flotation.

机译:可持续采矿-解决黄铜矿处理/工艺浸出,溶剂萃取和浮选的问题。

获取原文
获取原文并翻译 | 示例

摘要

Chalcopyrite ore forms the significant fraction of copper deposits in the earth crust. However, it is also the most difficult to treat using conventional ferric leaching methods. Smelting and electro-refining are currently the methods used in treating chalcopyrite concentrate obtained from froth flotation. Due to the ever increasing environmental requirements on smelters by the Environmental Protection Agency, new smelters are scarce in the United States. The scarcity of smelters has lead to the urgent need to find a novel leaching method for the abundant chalcopyrite deposits in the USA and the rest of the world.;This chapter(one) of the dissertation, therefore, investigated the leaching of chalcopyrite ore at pH 2 using a newly discovered oxidant (peroxodisulfate). Our results show that chalcopyrite leaching using peroxodisulfate follows a surface reaction shrinking core model. The activation energy of chalcopyrite leaching using peroxodisulfate ion was calculated as 41.1 kJ mol-1 . We also report that the leaching of chalcopyrite ore is affected by particle size and that stirring hurts leaching of chalcopyrite. Additionally, we found that peroxodisulfate can produce from sulfuric ions electrochemically.;Hydrogen peroxide, permanganate, peroxodisulfate and ferric ions are all strong oxidants that have been researched in production pregnant leach solution (PLS) from chalcopyrite ore leaching. Because, solvent extraction is the next step in the recovery of copper from pregnant leach solutions (PLS). The questions, therefore, arises as to the fate of the organic extractant used in solvent extraction coming in contact with strong oxidant residual in the PLS.;In chapter two of the dissertation, we studied the effect of strong oxidant residual in PLS on the degradation of organic extractants during solvent extraction of copper. Exposed organic extractants were analyzed using interfacial tension(IFT), Fourier Transform Infrared (FTIR) spectroscopy and CG LS. The results obtained from IFT and FTIR analysis, show no effect on the organic extractants exposed to sunlight and PLS containing the residual strong oxidant.;Finally in chapter 3, the dissertation exams alternative water source for the flotation of chalcopyrite. Mineral flotation is a water-intensive process in mining. In order to sustain mining operations such flotation, which rely heavily on water, chapter 3 of the dissertation looks at using alternative water sources (in this case reclaimed wastewater) in the flotation of chalcopyrite ores; this effort is to limit the mining industries dependence on fresh ground water particularly in the Southwest of United States where water is a scarce commodity. The research studied the effect of reclaimed waste water on chalcopyrite flotation via contact angle and surface energy measurements. Furthermore, atomic force microscopy (AFM) and flotation tests were used to supplement the findings from contact angle and surface studies. We conclude here that the contact angle of a pure chalcopyrite surface was determined to be 75.6 degrees. We also found that pure chalcopyrite mineral surface is slightly polar with surface energies gammaCuFeS2LW = 41.4 mJ/m2 (apolar), gammaCuFeS2AB = 2.9 mJ/m2 (polar). The high value of the surface energy indicates pure chalcopyrite surface is slightly hydrophobic.
机译:黄铜矿矿石构成了地壳中大部分铜沉积物。但是,使用常规的铁浸出方法也是最难处理的。目前,冶炼和电精炼是用于处理从泡沫浮选获得的黄铜矿精矿的方法。由于环境保护局对冶炼厂的环境要求不断提高,因此在美国很少有新的冶炼厂。冶炼厂的稀缺性导致迫切需要为美国和世界其他地区的丰富黄铜矿寻找一种新颖的浸出方法。;因此,本章的第一章研究了在美国的黄铜矿的浸出。使用新发现的氧化剂(过二硫酸盐)调节pH值为2。我们的结果表明,使用过二硫酸盐浸出的黄铜矿遵循表面反应收缩核模型。用过二硫酸根离子浸出黄铜矿的活化能经计算为41.1 kJ mol-1。我们还报告说,黄铜矿矿石的浸出受粒度的影响,搅拌会伤害黄铜矿的浸出。此外,我们发现过硫酸氢盐可以电化学方式从硫酸根离子中产生。过氧化氢,高锰酸根,过硫酸氢盐和三价铁离子都是在从黄铜矿矿石浸出生产孕浸出溶液(PLS)中进行研究的强氧化剂。因为,溶剂萃取是从浸出液(PLS)中回收铜的下一步。因此,对于溶剂萃取中使用的有机萃取剂与PLS中的强氧化剂残留相接触的命运提出了疑问。论文的第二章研究了PLS中的强氧化剂残留对降解的影响。铜溶剂萃取过程中有机萃取剂的制备。使用界面张力(IFT),傅立叶变换红外(FTIR)光谱和CG LS分析暴露的有机萃取剂。从IFT和FTIR分析获得的结果表明,对暴露于阳光和含有残留强氧化剂的PLS的有机萃取剂没有影响。最后,在第三章中,论文研究了用于黄铜矿浮选的替代水源。矿物浮选是采矿中水耗密集的过程。为了维持这种严重依赖水的浮选开采作业,本文的第3章研究了在黄铜矿浮选中使用替代水源(在这种情况下为再生废水)。这种努力是为了限制采矿业对淡水的依赖,特别是在水稀少的美国西南部地区。该研究通过接触角和表面能测量研究了再生废水对黄铜矿浮选的影响。此外,原子力显微镜(AFM)和浮选测试用于补充接触角和表面研究的发现。我们在这里得出结论,纯黄铜矿表面的接触角确定为75.6度。我们还发现,纯黄铜矿矿物表面具有轻微的极性,表面能gammaCuFeS2LW = 41.4 mJ / m2(非极性),gammaCuFeS2AB = 2.9 mJ / m2(极性)。高的表面能表明纯黄铜矿表面略带疏水性。

著录项

  • 作者

    Dakubo, Francis.;

  • 作者单位

    The University of Arizona.;

  • 授予单位 The University of Arizona.;
  • 学科 Mining engineering.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 153 p.
  • 总页数 153
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号