首页> 外文学位 >Glacial Tree Physiology: Using Stable Isotopes to Reconstruct Plant Responses to Environmental Change Since the Last Glacial Period.
【24h】

Glacial Tree Physiology: Using Stable Isotopes to Reconstruct Plant Responses to Environmental Change Since the Last Glacial Period.

机译:冰川树生理学:自上个冰川期以来,使用稳定的同位素来重建植物对环境变化的反应。

获取原文
获取原文并翻译 | 示例

摘要

Increases in atmospheric [CO2] (CO2 concentration) over the last several hundred years have resulted in a current level of just under 400 ppm and represent novel conditions for modern plants relative to their glacial counterparts. Glacial plants experienced consistent oscillations in [CO2] between 180 and 270 ppm coinciding with glacial-interglacial cycles of the last ∼1 million years. Studies of modern plants grown under glacial [CO2] show severe and consistent negative responses in physiology and biomass; however, detailed analysis of glacial plant material remains limited. Investigation of long-term plant responses to changes in atmospheric CO2 levels provides important information on glacial plant physiological patterns as well as ecosystem-level processes such as primary productivity and terrestrial carbon storage.;To assess plant responses to low [CO2] over geologic time scales, preserved glacial wood material was analyzed and compared to modern trees from the same regions. Glacial Juniperus specimens spanning the last 50,000 years were obtained from the La Brea tar pits in Los Angeles, CA. Glacial Agathis specimens, 50,000+ years old, were obtained from peat bogs in North Island, New Zealand. In both systems, ring width and carbon isotope analysis was performed to compare physiological responses to changes in [CO2] and environmental factors since the last glacial period. Carbon isotopic signatures were used to calculate c i/ca (the ratio of internal CO2 availability to that of the atmosphere) and ci. Oxygen isotope analysis was also performed on Juniperus to analyze responses to anomalous events, specifically El Nino years.;Both Juniperus and Agathis showed constant mean ci/ca between the last glacial period and modern times. Glacial mean ci was half the modern ci levels in both species. These results suggest severe carbon limitations in glacial trees, which could have impacted primary productivity and annual growth patterns. Despite having less than half the available carbon, glacial Juniperus and Agathis were able to maintain similar growth patterns to their modern counterparts. We attribute this lack of CO2 fertilization on tree growth to environmental constraints specific to each region, and constraints resulting from adaptations to 10-14 million years of low CO2 conditions.;Oxygen isotope analysis was performed on glacial and modern Juniperus to reconstruct El Nino impacts in southern California over the last glacial period using a Bayesian model developed on low-elevation southern California Juniperus. Under less water-limited growing conditions, modern Juniperus from higher elevations do not respond as strongly or as predictably to ENSO-induced changes in temperature and precipitation. This result suggests the same could be true for glacial trees, which could confound proxy-based results in this region. A deeper understanding of the climate-physiology relationship of a species under different environmental conditions is required before a reliable paleo-proxy can be developed.;This research advances our understanding of plant responses to glacial conditions. Carbon isotope analysis provides some of the first direct evidence that glacial plants remained near their lower carbon limit throughout the last glacial period. The ring width analysis shows that operating under limiting carbon conditions did not reduce growth in glacial trees, likely due to environmental constraints on growth, and adaptive and evolutionary constraints to utilizing higher [CO2] availability. The oxygen isotope analysis indicates altered physiological strategies under less water-limited growing conditions, which impact the strength of plant responses to anomalous climatic events. Collectively, these results have serious implications for understanding of glacial plant function, estimating ecosystem-scale responses such as primary productivity, and developing paleo-proxies for global atmospheric circulation patterns.
机译:在过去的几百年中,大气中[CO2](CO2浓度)的增加导致当前的水平略低于400 ppm,这相对于冰川冰川而言,代表了现代植物的新条件。在最近的一百万年间,冰川植物在[CO2]中经历了持续的180-270 ppm的振荡,这与冰川间的循环有关。对在冰川[CO2]下生长的现代植物的研究表明,在生理和生物量方面存在严重且一致的负面反应。但是,对冰川植物材料的详细分析仍然有限。长期植物对大气CO2水平变化的反应研究为冰川植物的生理模式以及生态系统水平的过程(例如初级生产力和陆地碳储量)提供了重要信息。评估地质时期植物对低[CO2]的反应规模,保存的冰川木材料进行了分析,并与来自同一地区的现代树木进行了比较。从加利福尼亚州洛杉矶的La Brea焦油坑中获得了过去50,000年的冰川Juniperus标本。从新西兰北岛的泥炭沼泽获得了50,000多年前的冰川Agathis标本。在这两个系统中,都进行了环宽和碳同位素分析,以比较自上个冰期以来对[CO2]和环境因素变化的生理响应。碳同位素特征用于计算c i / ca(内部CO2利用率与大气利用率的比值)和ci。还对Juniperus进行了氧同位素分析,以分析对异常事件(特别是厄尔尼诺年)的响应。; Juniperus和Agathis都显示了上一个冰川期与近代之间恒定的平均ci / ca。两种物种的冰川平均ci值是现代ci值的一半。这些结果表明,冰川树木的碳含量受到严重限制,这可能会影响初级生产力和年增长模式。尽管可用的碳量不到一半,但冰川朱尼普鲁斯人和阿加西斯人仍然能够保持与现代同类人相似的增长方式。我们将树木生长过程中缺乏CO2施肥归因于每个地区特有的环境限制以及适应10-14百万年的低CO2条件所产生的限制。;对冰川和现代Juniperus进行了氧同位素分析,以重建厄尔尼诺现象的影响在上一个冰川期,使用贝叶斯模型在加利福尼亚南部南部进行了研究,该模型是在南部加利福尼亚低海拔朱尼普鲁斯上开发的。在水限制较少的生长条件下,高海拔地区的现代Jun足类对ENSO引起的温度和降水变化的响应不那么强烈或无法预测。该结果表明,冰川树也可能如此,这可能会混淆该地区基于代理的结果。在开发出可靠的古代理之前,需要对不同环境条件下物种的气候-生理关系有更深入的了解。这项研究使我们对植物对冰川条件的响应有了更深入的了解。碳同位素分析提供了一些初步的直接证据,表明整个冰川期冰川植物都保持在其较低的碳极限附近。环宽度分析表明,在有限的碳条件下进行操作并不会降低冰川树木的生长,这可能是由于环境对生长的限制以及对利用较高[CO2]利用率的适应性和进化性限制。氧同位素分析表明,在水限制较少的生长条件下,生理策略发生了变化,这影响了植物对异常气候事件的反应强度。总的来说,这些结果对理解冰川植物的功能,估计生态系统规模的响应(例如初级生产力)以及开发全球大气环流模式的古近系具有重要意义。

著录项

  • 作者

    Gerhart Barley, Laci M.;

  • 作者单位

    University of Kansas.;

  • 授予单位 University of Kansas.;
  • 学科 Biology Ecology.;Climate Change.;Biology Botany.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 215 p.
  • 总页数 215
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号