首页> 外文学位 >Numerical techniques for the noninvasive assessment of material properties and stresses in soft biomaterials.
【24h】

Numerical techniques for the noninvasive assessment of material properties and stresses in soft biomaterials.

机译:用于无创评估软生物材料的材料特性和应力的数值技术。

获取原文
获取原文并翻译 | 示例

摘要

The noninvasive measurement of finite displacements and strains in biomaterials by magnetic resonance imaging (MRI) may be shown to enable mathematical estimates of stress distributions and material properties within structures of the body such as articular cartilage or the intervertebral disc. Such methods will allow for non-contact and patient-specific modeling in a manner not currently possible with traditional mechanical testing or finite element techniques. Therefore, the objective of this thesis was to develop computational methods incorporating imaging-based measures of deformation, composition, and local microstructure to permit nondestructive analysis of a range of complex biomechanical systems.;Finite strain-based models were developed and applied towards the analysis of several biomaterial systems of increasing material complexity. First, a model for the analysis of a homogeneous, single material system was created and applied to juvenile porcine cartilage for both linear and nonlinear material assumptions under plane stress conditions. Through this study, the viability of estimating stresses within a homogeneous material system solely from MRI-based displacement and strain measures could be established. The model was then expanded to encompass single-plane, multi-region structures and applied towards the analysis of regional stresses within a rabbit intervertebral disc degeneration model. This model incorporated imaging-based methods to estimate heterogeneous properties within the disc structure based upon local biochemical composition, and showed that the degeneration state of a tissue system could effectively be visualized through the use of finite strain-based modeling. A multi-constituent mixture-based material model was next implemented in the analysis of agarose gel constructs. Material parameter estimates from this model were found to agree with those determined by an unconfined compression validation model, establishing physical relevance of noninvasive parameter estimates produced by the models. Finally, the mixture-based material model was applied towards an in situ analysis of the human intervertebral disc.;The models implemented here are the first such applications to use MRI-based measures of deformation, composition, and local microstructure to provide a nondestructive, finite strain-based method of characterizing stress and material properties in cartilage and intervertebral discs during applied loading.
机译:可以示出通过磁共振成像(MRI)对生物材料中的有限位移和应变的非侵入性测量,以能够数学估计诸如关节软骨或椎间盘的身体结构内的应力分布和材料特性。这样的方法将允许以传统机械测试或有限元技术目前无法实现的方式进行非接触式和针对特定患者的建模。因此,本论文的目的是开发一种结合基于成像的变形,组成和局部微观结构测量方法的计算方法,以允许对一系列复杂的生物力学系统进行无损分析。;开发了基于有限应变的模型并将其应用于分析一些增加材料复杂性的生物材料系统。首先,创建了一个用于分析均质,单一材料系统的模型,并将其应用于少年猪软骨,以在平面应力条件下进行线性和非线性材料假设。通过这项研究,可以建立仅通过基于MRI的位移和应变测量估算均质材料系统内应力的可行性。然后将该模型扩展为涵盖单平面,多区域结构,并应用于兔子椎间盘退变模型内的区域应力分析。该模型结合了基于成像的方法,可基于局部生化成分估算椎间盘结构内的异质性,并显示组织系统的退化状态可通过使用基于有限应变的建模有效地可视化。接下来在琼脂糖凝胶构建体的分析中实现了基于多成分混合物的材料模型。发现该模型的材料参数估计值与无限制压缩验证模型确定的结果相符,从而确定了模型产生的非侵入性参数估计值的物理相关性。最后,将基于混合物的材料模型应用于人体椎间盘的原位分析。这里实现的模型是第一个使用基于MRI的变形,成分和局部微结构测量来提供非破坏性,基于有限应变的方法在施加载荷的过程中表征软骨和椎间盘的应力和材料特性。

著录项

  • 作者

    Butz, Kent D.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Engineering Mechanical.;Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 128 p.
  • 总页数 128
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:41:41

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号