首页> 外文学位 >Fermion Bag Approach for Hamiltonian Lattice Field Theories
【24h】

Fermion Bag Approach for Hamiltonian Lattice Field Theories

机译:哈密​​顿格场理论的费米子袋法

获取原文
获取原文并翻译 | 示例

摘要

Understanding the critical behavior near quantum critical points for strongly correlated quantum many-body systems remains intractable for the vast majority of scenarios. Challenges involve determining if a quantum phase transition is first- or second-order, and finding the critical exponents for second-order phase transitions. Learning about where second-order phase transitions occur and determining their critical exponents is particularly interesting, because each new second-order phase transition defines a new quantum field theory.;Quantum Monte Carlo (QMC) methods are one class of techniques that, when applicable, offer reliable ways to extract the nonperturbative physics near strongly coupled quantum critical points. However, there are two formidable bottlenecks to the applicability of QMC: (1) the sign problem and (2) algorithmic update inefficiencies. In this thesis, I overcome both these difficulties for a class of problems by extending the fermion bag approach recently developed by Shailesh Chandrasekharan to the Hamiltonian formalism and by demonstrating progress using the example of a specific quantum system known as the t-V model, which exhibits a transition from a semimetal to an insulator phase for a single flavor of four-component Dirac fermions.;I adapt the fermion bag approach, which was originally developed in the context of Lagrangian lattice field theories, to be applicable within the Hamiltonian formalism, and demonstrate its success in two ways: first, through solutions to new sign problems, and second, through the development of new efficient QMC algorithms. In addressing the first point, I present a solution to the sign problem for the t-V model. While the t-V model is the simplest Gross-Neveu model of the chiral Ising universality class, the specter of the sign problem previously prevented its simulation with QMC for 30 years, and my solution initiated the first QMC studies for this model. The solution is then extended to many other Hamiltonian models within a class that involves fermions interacting with quantum spins. Some of these models contain an interesting quantum phase transition between a massless/semimetal phase to a massive/insulator phase in the so called Gross-Neveu universality class. Thus, the new solutions to the sign problem allow for the use of the QMC method to study these universality classes.;The second point is addressed through the construction of a Hamiltonian fermion bag algorithm. The algorithm is then used to compute the critical exponents for the second-order phase transition in the t-V model. By pushing the calculations to significantly larger lattice sizes than previous recent computations (642 sites versus 242 sites), I am able to compute the critical exponents more reliably here compared to earlier work. I show that the inclusion of these larger lattices causes a significant shift in the values of the critical exponents that was not evident for the smaller lattices. This shift puts the critical exponent values in closer agreement with continuum 4-epsilon expansion calculations. The largest lattice sizes of 642 at a comparably low temperature are reachable due to efficiency gains from this Hamiltonian fermion bag algorithm. The two independent critical exponents I find, which completely characterize the phase transition, are eta=.51(3) and nu=.89(1), compared to previous work that had lower values for these exponents. The finite size scaling fit is excellent with a chi2/DOF=.90, showing strong evidence for a second-order critical phase transition, and hence a non-perturbative QFT can be defined at the critical point.
机译:在绝大多数情况下,了解强相关的量子多体系统在量子临界点附近的临界行为仍然是棘手的。挑战涉及确定量子相变是一阶还是二阶的,并找到二阶相变的临界指数。了解二阶相变发生在哪里并确定其临界指数特别有趣,因为每个新的二阶相变都定义了一种新的量子场论。量子蒙特卡洛(QMC)方法是一类技术,在适用时,提供了可靠的方法来提取强耦合量子临界点附近的非微扰物理学。但是,QMC的适用性存在两个巨大的瓶颈:(1)符号问题和(2)算法更新效率低下。在本论文中,我通过将Shailesh Chandrasekharan最近开发的费米子袋方法扩展到哈密顿形式论并通过使用称为tV模型的特定量子系统的示例来演示进展,克服了这两个难题的这两个难题。我从半金属到绝缘体的过渡过程中获得了单一风味的四组分狄拉克费米子。我采用了费米子袋方法,该方法最初是在拉格朗日晶格场理论的背景下开发的,可应用于哈密顿形式论中,并证明它的成功有两种方式:第一,通过解决新的符号问题,第二,通过开发新的高效QMC算法。在解决第一点时,我提出了t-V模型的符号问题的解决方案。虽然t-V模型是手性Ising通用性类别中最简单的Gross-Neveu模型,但符号问题的幽灵先前阻止了QMC的模拟长达30年,而我的解决方案开始了对该模型的首次QMC研究。然后将该解决方案扩展到涉及费米子与量子自旋相互作用的一类中的许多其他哈密顿模型。其中一些模型在所谓的Gross-Neveu通用性类别中包含了从无质量/半金属相到质量/绝缘体相之间有趣的量子相变。因此,新的符号问题解决方案允许使用QMC方法研究这些通用性类。第二点是通过构造哈密顿费米子袋算法来解决的。然后,该算法用于计算t-V模型中二阶相变的临界指数。通过将计算推到比以前最近的计算大得多的晶格大小(642个站点对242个站点),与早期的工作相比,我能够在此更可靠地计算关键指数。我表明,包含这些较大的晶格会导致临界指数值发生显着变化,而对于较小的晶格而言这并不明显。此偏移使临界指数值与连续4ε扩展计算更加接近。由于这种哈密顿费米子袋算法的效率提高,在相对较低的温度下可获得642的最大晶格尺寸。与以前的工作相比,我发现的两个独立的临界指数可以完全描述相变,它们分别是eta = .51(3)和nu = .89(1)。 chi2 / DOF = .90时,有限尺寸缩放拟合非常出色,显示了二阶临界相变的有力证据,因此可以在临界点定义无扰动QFT。

著录项

  • 作者

    Huffman, Emilie.;

  • 作者单位

    Duke University.;

  • 授予单位 Duke University.;
  • 学科 Condensed matter physics.;Computational physics.;High energy physics.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 121 p.
  • 总页数 121
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号