首页> 外文学位 >Design and Analysis of Underwater Acoustic Networks with Reflected Links.
【24h】

Design and Analysis of Underwater Acoustic Networks with Reflected Links.

机译:具有反射链接的水下声网的设计与分析。

获取原文
获取原文并翻译 | 示例

摘要

Underwater acoustic networks (UWANs) have applications in environmental state monitoring, oceanic profile measurements, leak detection in oil fields, distributed surveillance, and navigation. For these applications, sets of nodes are employed to collaboratively monitor an area of interest and track certain events or phenomena. In addition, it is common to find autonomous underwater vehicles (AUVs) acting as mobile sensor nodes that perform search-and-rescue missions, reconnaissance in combat zones, and coastal patrol. These AUVs are to work cooperatively to achieve a desired goal and thus need to be able to, in an ad-hoc manner, establish and sustain communication links in order to ensure some desired level of quality of service. Therefore, each node is required to adapt to environmental changes and be able to overcome broken communication links caused by external noise affecting the communication channel due to node mobility. In addition, since radio waves are quickly absorbed in the water medium, it is common for most underwater applications to rely on acoustic (or sound) rather than radio channels for mid-to-long range communications. However, acoustic channels pose multiple challenging issues, most notably the high transmission delay due to slow signal propagation and the limited channel bandwidth due to high frequency attenuation. Moreover, the inhomogeneous property of the water medium affects the sound speed profile while the signal surface and bottom reflections leads to multipath effects.;In this dissertation, we address these networking challenges by developing protocols that take into consideration the underwater physical layer dynamics. We begin by introducing a novel surface-based reflection scheme (SBR), which takes advantage of the multipath effects of the acoustic channel. SBR works by using reflections from the water surface, and bottom, to establish non-line-of-sight (NLOS) communication links. SBR makes it possible to incorporate both line-of-sight (LOS) and NLOS links by utilizing directional antennas, which will boost the signal-to-noise ratio (SNR) at the receiver while promoting NLOS usage. In our model, we employ a directional underwater acoustic antenna composed of an array of hydrophones that can be summed up at various phases and amplitudes resulting in a beam-former. We have also adopted a practical multimodal directional transducer concept which generates both directional and omni-directional beam patterns by combining the fundamental vibration modes of a cylindrical acoustic radiator. This allows the transducer to be electrically controlled and steered by simply adjusting the electrical voltage weights. A prototype acoustic modem is then developed to utilize the multimodal directional transducer for both LOS and NLOS communication. The acoustic modem has also been used as a platform for empirically validating our SBR communication model in a tank and with empirical data.;Networking protocols have been developed to exploit the SBR communication model. These protocols include node discovery and localization, directional medium access control (D-MAC) and geographical routing. In node discovery and localization, each node will utilize SBR-based range measurements to its neighbors to determine their relative position. The D-MAC protocol utilizes directional antennas to increase the network throughput due to the spatial efficiency of the antenna model. In the proposed reflection-enabled directional MAC protocol (RED-MAC), each source node will be able to determine if an obstacle is blocking the LOS link to the destination and switch to the best NLOS link by utilizing surface/bottom reflections. Finally, we have developed a geographical routing algorithm which aims to establish the best stable route from a source node to a destination node. The optimized route is selected to achieve maximum network throughput. Extensive analysis of the network throughput when utilizing directional antennas is also presented to show the benefits of directional communication on the overall network throughput.
机译:水下声网络(UWAN)在环境状态监视,海洋轮廓测量,油田泄漏检测,分布式监视和导航中具有应用。对于这些应用,使用节点集来协作监视感兴趣的区域并跟踪某些事件或现象。此外,通常会找到充当移动传感器节点的自动水下航行器(AUV),以执行搜索和救援任务,在作战区域进行侦察以及沿海巡逻。这些AUV协同工作以实现期望的目标,因此需要能够以自组织方式建立和维持通信链路,以确保一定水平的服务质量。因此,需要每个节点适应环境变化,并且能够克服由于节点移动性而影响通信信道的外部噪声引起的通信链路中断。此外,由于无线电波会在水介质中迅速吸收,因此对于大多数水下应用而言,通常依靠声音(或声音)而不是无线电信道来进行中远距离通信。然而,声信道带来了多个挑战性的问题,最显着的是由于信号传播缓慢而导致的高传输延迟以及由于高频衰减而导致的有限的信道带宽。此外,水介质的不均匀特性会影响声速曲线,而信号表面和底部反射会导致多径效应。本论文中,我们通过开发考虑水下物理层动力学的协议来应对这些网络挑战。我们首先介绍一种新颖的基于表面的反射方案(SBR),该方案利用了声通道的多径效应。 SBR通过使用水面和底部的反射来建立非视线(NLOS)通信链接。通过利用定向天线,S​​BR可以合并视线(LOS)和NLOS链路,这将提高接收器的信噪比(SNR),同时促进NLOS的使用。在我们的模型中,我们采用了由一系列水听器组成的定向水下声天线,该水听器可以在各种相位和幅度上求和,从而形成波束形成器。我们还采用了实用的多模式定向换能器概念,该概念通过组合圆柱声辐射器的基本振动模式而生成定向和全向波束图。这允许通过简单地调节电压权重来对换能器进行电控制和操纵。然后,开发了原型声学调制解调器,以利用多模态定向传感器进行LOS和NLOS通信。声波调制解调器也已被用作一个平台,用于根据经验和经验数据来验证罐中的SBR通信模型。已开发出网络协议以利用SBR通信模型。这些协议包括节点发现和定位,定向媒体访问控制(D-MAC)和地理路由。在节点发现和定位中,每个节点将利用基于SBR的距离测量值来确定其邻居。由于天线模型的空间效率,D-MAC协议利用定向天线来增加网络吞吐量。在提出的启用反射的定向MAC协议(RED-MAC)中,每个源节点将能够确定是否有障碍物阻塞了到目的地的LOS链接,并可以通过使用表面/底部反射来切换到最佳NLOS链接。最后,我们开发了一种地理路由算法,旨在建立从源节点到目标节点的最佳稳定路由。选择最佳路由以实现最大的网络吞吐量。还介绍了使用定向天线时网络吞吐量的广泛分析,以显示定向通信对整个网络吞吐量的好处。

著录项

  • 作者

    Emokpae, Lloyd.;

  • 作者单位

    University of Maryland, Baltimore County.;

  • 授予单位 University of Maryland, Baltimore County.;
  • 学科 Engineering Computer.;Speech Communication.;Physics Acoustics.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 237 p.
  • 总页数 237
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号