首页> 外文学位 >Multiphase flows with digital and traditional microfluidics.
【24h】

Multiphase flows with digital and traditional microfluidics.

机译:具有数字和传统微流体技术的多相流。

获取原文
获取原文并翻译 | 示例

摘要

Multi-phase fluid systems are an important concept in fluid mechanics, seen every day in how fluids interact with solids, gases, and other fluids in many industrial, medical, agricultural, and other regimes. In this thesis, the development of a two-dimensional digital microfluidic device is presented, followed by the development of a two-phase microfluidic diagnostic tool designed to simulate sandstone geometries in oil reservoirs. In both instances, it is possible to take advantage of the physics involved in multiphase flows to affect positive outcomes in both.;In order to make an effective droplet-based digital microfluidic device, one must be able to precisely control a number of key processes including droplet positioning, motion, coalescence, mixing, and sorting. For planar or open microfluidic devices, many of these processes have yet to be demonstrated. A suitable platform for an open system is a superhydrophobic surface, as suface characteristics are critical. Great efforts have been spent over the last decade developing hydrophobic surfaces exhibiting very large contact angles with water, and which allow for high droplet mobility. We demonstrate that sanding Teflon can produce superhydrophobic surfaces with advancing contact angles of up to 151° and contact angle hysteresis of less than 4°. We use these surfaces to characterize droplet coalescence, mixing, motion, deflection, positioning, and sorting. This research culminates with the presentation of two digital microfluidic devices: a droplet reactor/analyzer and a droplet sorter.;As global energy usage increases, maximizing oil recovery from known reserves becomes a crucial multiphase challenge in order to meet the rising demand. This thesis presents the development of a microfluidic sandstone platform capable of quickly and inexpensively testing the performance of fluids with different rheological properties on the recovery of oil. Specifically, these microfluidic devices are utilized to examine how shear-thinning, shear-thickening, and viscoelastic fluids affect oil recovery. This work begins by looking at oil displacement from a microfluidic sandstone device, then investigates small-scale oil recovery from a single pore, and finally investigates oil displacement from larger scale, more complex microfluidic sandstone devices of varying permeability. The results demonstrate that with careful fluid design, it is possible to outperform current commercial additives using the patent-pending fluid we developed. Furthermore, the resulting microfluidic sandstone devices can reduce the time and cost of developing and testing of current and new enhanced oil recovery fluids.
机译:多相流体系统是流体力学中的一个重要概念,每天在许多工业,医学,农业和其他领域中,流体与固体,气体和其他流体的相互作用方式都可以看到。本文介绍了二维数字微流体装置的开发,然后是设计用于模拟油藏砂岩几何形状的两相微流体诊断工具的开发。在这两种情况下,都可以利用多相流所涉及的物理学来影响两者的积极成果。为了制造出有效的基于液滴的数字微流控设备,必须能够精确控制许多关键过程包括液滴定位,运动,合并,混合和排序。对于平面或开放式微流控设备,其中许多过程尚待证明。开放式系统的合适平台是超疏水表面,因为表面特性至关重要。在过去的十年中,人们花费了巨大的努力来开发疏水性表面,该表面表现出与水的非常大的接触角,并允许高的液滴流动性。我们证明砂光聚四氟乙烯可以产生超疏水表面,其前进接触角可达151°,接触角滞后小于4°。我们使用这些表面来表征液滴的聚结,混合,运动,偏转,定位和分类。这项研究的最终结果是提出了两种数字微流控设备:液滴反应器/分析仪和液滴分选器。随着全球能源使用量的增加,最大限度地提高已知储量的采油量成为满足不断增长的需求的关键性多相挑战。本文提出了一种微流控砂岩平台的开发,该平台能够快速,廉价地测试具有不同流变特性的流体在采油中的性能。具体而言,这些微流体装置可用于检查稀化,稠化和粘弹性流体如何影响采油率。这项工作首先着眼于从微流体砂岩装置中驱油,然后研究从单个孔隙中进行小规模采油,最后研究了具有更大渗透率的,更大型,更复杂的微流体砂岩装置中的驱油。结果表明,经过精心设计的油液,使用我们开发的正在申请专利的油液有可能超越目前的商业添加剂。此外,所得的微流体砂岩装置可以减少开发和测试当前和新的增强油采收液的时间和成本。

著录项

  • 作者

    Nilsson, Michael A.;

  • 作者单位

    University of Massachusetts Amherst.;

  • 授予单位 University of Massachusetts Amherst.;
  • 学科 Engineering Mechanical.;Physics General.;Energy.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 218 p.
  • 总页数 218
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号