首页> 外文学位 >Optimizing Conservation Agriculture Production and Identifying Its Drivers in the Mid-Hills of Nepal and Beyond
【24h】

Optimizing Conservation Agriculture Production and Identifying Its Drivers in the Mid-Hills of Nepal and Beyond

机译:优化保护性农业生产并确定尼泊尔中部及周边地区的保护性农业驱动力

获取原文
获取原文并翻译 | 示例

摘要

Conservation agriculture (CA) is a crop management paradigm based on minimal soil disturbance, crop rotation and year-round cover of soil surfaces by crop residues, and is globally promoted as a system that can increase productivity while improving soil quality. Adoption of CA by smallholder farmers in the mid-hills of Nepal is constrained by potential time lags in materialization of yield benefits, excessive rains during the maize growing season, and dry winter season conditions that incentivize farmers to grow low-residue, short-season rapeseed rather than a high-residue, full-season winter crop. We found that monsoon maize yields are depressed under CA management, but secondary dry-season crops benefited from CA management provided planting dates were optimized. Furthermore, CA management significantly increased soil aggregation bulk density, time-to-pond and surface cracking, but decreased infiltration rate within the first two years after adoption. Subsequent crop simulation modeling using the Decision Support System for Agricultural Transfer (DSSAT) showed that a maize-wheat double crop is possible given early maize planting and/or shorter duration maize varieties. In hot and dry locations, optimal wheat planting occurs in early September but may be limited by heat stress, whereas cooler and wetter locations have optimal planting between October 15th and November 1st. Conservation agriculture productivity showed the greatest gains over conventional management (CP) for late wheat planting dates and at locations with temperature averages of 14°C or less. Also, delaying wheat planting after maize harvest boosted crop yields by allowing for soil water recharge and mineralization of plant residues. In a second set of crops simulations, we show that soil texture and the amounts of residues retained on soil surfaces significantly impact relative productivity of CA compared CP, and that given optimal residue retention rates, CA systems are a less risky production option for smallholder farmers regardless of soil type. Our last study used a meta-analysis of the CA literature and machine learning techniques to identify the drivers and predict the outcome of CA globally. We found that the duration of CA management and weather parameters are the primary drivers of CA productivity, and that CA production is most productive in equatorial zones of the world.
机译:保护性农业(CA)是一种基于最小的土壤扰动,作物轮作和作物残渣全年覆盖土壤的作物管理范例,在全球范围内得到推广,认为它可以提高生产率并改善土壤质量。尼泊尔中部地区小农户采用CA的方法受到产量收益实现的潜在时间滞后,玉米生长期降雨过多以及冬季干旱的条件激励农民种植低残留,短季节的作物油菜籽,而不是高残留,全季的冬季作物。我们发现,在CA管理下季风玉米单产下降,但只要优化播种日期,次季旱季作物将从CA管理中受益。此外,CA管理显着提高了土壤聚集体的容重,响应时间和表面开裂,但在采用后的头两年内降低了入渗率。随后使用农业转移决策支持系统(DSSAT)进行的作物模拟模型表明,考虑到早期玉米种植和/或较短持续时间的玉米品种,玉米-小麦双作可能成为可能。在炎热干燥的地区,小麦的最佳播种时间为9月初,但可能受到热胁迫的限制,而凉爽和潮湿的地区在10月15日至11月1日之间则是最佳播种时间。在小麦播种后期和平均温度不超过14°C的地区,保护性农业生产力表现出比常规管理(CP)最高的收益。此外,玉米收获后推迟小麦播种,还可以通过补充土壤水分和植物残渣矿化来提高作物产量。在第二组农作物模拟中,我们表明,与CP相比,土壤质地和残留在土壤表面的残渣量显着影响CA的相对生产力,并且在最佳残渣保留率的情况下,CA系统对于小农户而言风险较小不论土壤类型如何我们的最后一项研究对CA文献和机器学习技术进行了荟萃分析,以识别驱动因素并预测全球CA的结果。我们发现,CA管理的持续时间和天气参数是CA生产力的主要驱动力,并且CA生产在世界赤道地区生产力最高。

著录项

  • 作者

    Laborde, John.;

  • 作者单位

    The University of Nebraska - Lincoln.;

  • 授予单位 The University of Nebraska - Lincoln.;
  • 学科 Agronomy.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 209 p.
  • 总页数 209
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号