首页> 外文学位 >Design of meta-materials with novel thermoelastic properties.
【24h】

Design of meta-materials with novel thermoelastic properties.

机译:具有新型热弹性特性的超材料的设计。

获取原文
获取原文并翻译 | 示例

摘要

The development of new techniques in micro-manufacturing in recent years has enabled the fabrication of material microstructures with essentially arbitrary designs, including those with multiple constituent materials and void space in nearly any geometry. With an essentially open design space, the onus is now on the engineer to design composite materials which are optimal for their purpose. These new materials, called meta-materials or materials with architected microstructures, offer the potential to mix and match properties in a way that exceeds that of traditional composites.;We concentrate on the thermal and elastic properties of isotropic meta-materials, and design microstructures with combinations of Young's modulus, Poisson's ratio, thermal conductivity, thermal expansion, and mass density which are not found among naturally-occurring or traditional composite materials. We also produce designs with thermal expansion far below other materials.;We use homogenization theory to predict the material properties of a bulk meta-material comprised of a periodic lattice of unit cells, then use topology optimization to rearrange two constituent materials and void space within the unit cell in order to extremize an objective function which yields the combinations of properties we seek. This method is quite general and can be extended to consider additional properties of interest. We constrain the design space to satisfy material isotropy directly (2D), or to satisfy cubic symmetry (3D), from which point an isotropy constraint function is easily applied. We develop and use filtering, nonlinear interpolation, and thresholding methods to render the design problem well-posed, and as a result ensure our designs are manufacturable.;We have written two computer implementations of this design methodology. The first is for creating two-dimensional designs, which can run on a serial computer in approximately half an hour. The second is a parallel implementation to allow optimization in three dimensions with a large number of parameters. When running on a high-performance computing cluster, it allows for solutions in a few hours despite the greatly increased computational cost.
机译:近年来,微制造新技术的发展使材料微结构的制造具有基本上任意的设计,包括具有多种成分的材料和几乎任何几何形状的空隙的结构。有了一个基本开放的设计空间,工程师现在有责任设计出最适合其用途的复合材料。这些新材料称为超常材料或具有微结构的材料,具有以超越传统复合材料的方式混合和匹配特性的潜力。我们专注于各向同性超常材料的热和弹性特性,并设计微结构结合了杨氏模量,泊松比,导热系数,热膨胀和质量密度,这在天然或传统复合材料中都没有。我们还生产热膨胀远低于其他材料的设计。;我们使用均化理论来预测由单位晶格的周期性晶格组成的块状超材料的材料属性,然后使用拓扑优化来重新排列两个组成材料和内部的空隙空间为了最大化一个目标函数,该目标函数产生了我们寻求的特性组合。此方法非常通用,可以扩展为考虑其他感兴趣的属性。我们将设计空间约束为直接满足材料各向同性(2D)或满足三次对称性(3D),从这一点出发,易于应用各向同性约束函数。我们开发并使用了滤波,非线性插值和阈值化方法来使设计问题更合理,从而确保我们的设计可制造。我们已经编写了两种计算机实现该设计方法的实现。第一个是创建二维设计,可以在串行计算机上运行大约半小时。第二种是并行实现,以允许使用大量参数在三个维度上进行优化。在高性能计算群集上运行时,尽管计算成本大大增加,但它仍可以在几个小时内提供解决方案。

著录项

  • 作者

    Watts, Seth.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Mechanical engineering.;Materials science.;Computer science.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 108 p.
  • 总页数 108
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号