首页> 外文学位 >Optimality and resilience in patterns of carbon allocation and growth in vegetation under acclimation response to climate change.
【24h】

Optimality and resilience in patterns of carbon allocation and growth in vegetation under acclimation response to climate change.

机译:在适应气候变化的条件下,植被碳分配和增长方式的最优性和适应性。

获取原文
获取原文并翻译 | 示例

摘要

The earth's climate has changed significantly in the last 250 years due to activities arising from a rapidly growing human population such as, agriculture, industrialization, deforestation, pollution etc. While the pre-industrial atmospheric concentration of the greenhouse gas carbon dioxide was 280 ppm, it is currently at 400 ppm and is expected to reach 550 ppm by 2050. Under such a changing environmental condition plants undergo acclimation, by which they adjust to the altered environment and in doing so enhance their probability of survival. The acclimation response of plants significantly alters the land surface fluxes of water, carbon and energy thereby impacting the hydrologic cycle. Furthermore, the consequences of this acclimation on agricultural ecosystems is critical in tackling future food security issues. In this study we investigate the acclimation response of an agricultural ecosystem and its impact on the hydrologic cycle. We further explore the effects of plant acclimation on optimizing seed yield under climate change. In this study we consider 4 types of plant acclimation to one aspect of climate change, which is the elevated atmospheric carbon dioxide concentration. These are: a) eco-physiological, b) allocation c) biochemical and d) structural acclimation. We employ a multi-layer canopy, soil, and root system vegetation model to capture the effects of plant acclimation. This vegetation model is coupled with a teleonomic carbon allocation and growth model that we develop in this study to specifically capture the acclimation of carbon allocation. Our modeling results are tested using field experiments performed in a soybean agricultural system at the SoyFACE research facility in Illinois. Our modeling results indicate that the acclimation response of plants significantly alters the land surface fluxes of water, carbon and energy thereby impacting the hydrologic cycle. They confirm the widely observed effects of decreased transpiration (latent heat) fluxes, increased sensible heat fluxes, and increased plant carbon uptake. More interestingly, our results illustrate that each of the four acclimation responses cause a decrease in plant carbon uptake. Furthermore, under acclimation to elevated carbon dioxide, the increased carbon uptake is not proportionally allocated to different plant parts according to prior carbon allocation patterns, that is allometry. Compared to the vegetative parts, a significantly lower proportion of carbon is allocated to the reproductive parts of the plant. This result has significant consequences in obtaining projections of future crop yield under a changing climate, where we now project lower than expected yield increases for our crops. Further optimality analysis indicates that while plants are sub-optimal in terms of maximizing seed yield under current climate conditions, the extent of sub-optimality increases under future climate scenarios. This is because plants allocate more carbon to vegetative parts compared to reproductive parts. We test this result through a set of canopy thinning field experiments, and the results illustrate that plants which are artificially modified to have fewer leaves have a higher seed yield compared to plants growing under control conditions under both ambient and elevated carbon dioxide conditions. These results indicate the existence of a potential to increase seed yield by upto 23% through canopy modification alone. We hypothesize that the reason for this observed sub-optimality is a resilience trade off, whereby plants need to maintain resilience against extreme disturbance events such as drought, hail, herbivory and diseases. Through the help of simple non-linear systems, we illustrate how different attributes of resilience can be investigated and quantified. Finally, we propose a combined optimality versus resilience trade off framework which can be used to manage risk and optimize productivity in agricultural ecosystems.
机译:在过去的250年中,由于人口的快速增长,例如农业,工业化,森林砍伐,污染等,地球的气候发生了显着变化。虽然工业化前的温室气体二氧化碳浓度为280 ppm,目前它的含量为400 ppm,预计到2050年将达到550 ppm。在这种变化的环境条件下,植物要适应环境变化,从而适应环境变化,从而提高生存率。植物的驯化响应会显着改变陆地表面的水,碳和能量通量,从而影响水文循环。此外,这种适应对农业生态系统的影响对于解决未来的粮食安全问题至关重要。在这项研究中,我们调查了农业生态系统的适应性响应及其对水文循环的影响。我们进一步探讨了气候变化条件下植物适应对优化种子产量的影响。在这项研究中,我们考虑了4种类型的植物适应气候变化的一个方面,即大气中二氧化碳的浓度升高。它们是:a)生态生理学,b)分配c)生化和d)结构适应。我们采用多层冠层,土壤和根系植被模型来捕获植物适应的影响。这种植被模型与我们在这项研究中开发的专门用于捕获碳分配的适应性的远期碳分配和生长模型结合在一起。我们的建模结果通过在伊利诺伊州SoyFACE研究机构在大豆农业系统中进行的田间试验进行了测试。我们的模拟结果表明,植物的驯化响应会显着改变陆地表面的水,碳和能量通量,从而影响水文循环。他们证实了蒸腾通量(潜热)通量减少,显热通量增加和植物碳吸收增加的广泛观察到的影响。更有趣的是,我们的结果表明,四种驯化响应均会导致植物碳吸收量降低。此外,在适应升高的二氧化碳的情况下,增加的碳吸收没有根据先前的碳分配模式(即异速生长法)按比例分配给不同的植物部位。与营养部分相比,分配给植物生殖部分的碳比例要低得多。在气候变化的情况下,此结果对于获得未来作物单产的预测具有重大影响,我们现在预测在此情况下,我们的农作物单产增幅低于预期。进一步的最优性分析表明,尽管在当前气候条件下植物在最大程度提高种子产量方面不是次优的,但在未来气候情景下次优性的程度却有所提高。这是因为与生殖部分相比,植物向营养部分分配更多的碳。我们通过一组冠层间伐试验来测试该结果,结果表明,与在环境条件下和升高的二氧化碳条件下在控制条件下生长的植物相比,人工修饰以减少叶数的植物具有更高的种子产量。这些结果表明,仅通过冠层改良,就有可能将种子产量提高多达23%。我们假设这种观察到的次优性的原因是韧性的折衷,因此植物需要保持抵御极端干扰事件(例如干旱,冰雹,草食和疾病)的韧性。通过简单的非线性系统,我们说明了如何对弹性的不同属性进行调查和量化。最后,我们提出了最优与抵御权衡相结合的框架,可用于管理风险和优化农业生态系统的生产力。

著录项

  • 作者

    Srinivasan, Venkatraman.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Civil engineering.;Climate change.;Ecology.;Hydrologic sciences.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 143 p.
  • 总页数 143
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号