首页> 外文学位 >Computational modeling of the Friction Stir Welding process (FSW) and of the performance of FSW joints.
【24h】

Computational modeling of the Friction Stir Welding process (FSW) and of the performance of FSW joints.

机译:搅拌摩擦焊接过程(FSW)和FSW接头性能的计算模型。

获取原文
获取原文并翻译 | 示例

摘要

Friction Stir Welding (FSW) is a solid-state metal-joining process. Within FSW, a (typically) cylindrical tool-pin (threaded at the bottom and terminated with a circular-plate shape shoulder, at the top) is driven between two firmly-clamped plates (placed on a rigid backing support). Due to a high normal downward pressure applied to the shoulder and due to frictional sliding and plastic-deformation, substantial amount of heat is generated at the tool/work-piece interface and in the region underneath the tool shoulder. Thermally plasticized work-piece material is then extruded around the traveling tool and forged into a welding-joint behind the tool. Due to its solid-state character and lower process temperatures, FSW possesses a number of advantages in comparison to the conventional fusion welding processes. In the present work, advanced computational methods and tools are used to investigate three specific aspects of the FSW process: (a) material flow and stirring/mixing: Within the numerical model of the FSW process, the FSW tool is treated as a Lagrangian component while the workpiece material is treated as a Eulerian component. The employed coupled Eulerian/Lagrangian computational analysis of the welding process was of a two-way thermo-mechanical character (i.e. frictional-sliding/plastic-work dissipation is taken to act as a heat source in the thermal-energy balance equation) while temperature is allowed to affect mechanical aspects of the model through temperature-dependent material properties. The workpiece material (AA5059, solid-solution strengthened and strain-hardened aluminum alloy) is represented using a modified version of the classical Johnson-Cook model (within which the strain-hardening term is augmented in order to take into account for the effect of dynamic recrystallization) while the FSW tool material (AISI H13 tool steel) is modeled as an isotropic linear-elastic material. Within the analysis, the effects of some of the FSW key process parameters are investigated (e.g. weld pitch, tool tilt-angle and the tool pin-size). The results pertaining to the material flow during FSW are compared with their experimental counterparts. It is found that, for the most part, experimentally observed material-flow characteristics are reproduced within the current FSW-process model; (b) modifications of the existing workpiece material models for use in FSW simulations: Johnson-Cook strength material model is frequently used in finite element analyses of various manufacturing processes involving plastic deformation of metallic materials. The main attraction to this model arises from its mathematical simplicity and its ability to capture the first order metal-working effects (e.g. those associated with the influence of the extent of plastic deformation, rate of deformation and the attendant temperature). However, this model displays serious shortcomings when used in the engineering analyses of various hot-working processes (i.e. those utilizing temperatures higher than the material recrystallization temperature). These shortcomings are related to the fact that microstructural changes involving: (i) irreversible decrease in the dislocation density due to the operation of annealing/recrystallization processes; (ii) increase in grain size due to high-temperature exposure; and (iii) dynamic recrystallization-induced grain refinement, are not accounted for by the model. In the present work, an attempt is made to combine the basic physical-metallurgy principles with the associated kinetics relations in order to properly modify the Johnson-Cook material model, so that the model can be used in the analyses of metal hot-working and joining processes. The model is next used to help establish relationships between process parameters, material microstructure and properties in FSW welds of AA5083 (a non-age-hardenable, solid-solution strengthened, strain-hardened/stabilized Al-Mg-Mn alloy); and (c) FSW-joint failure mechanisms under ballistic impact loading conditions: A critical assessment is carried out of the microstructural changes, of the associated reductions in material mechanical properties and of the attendant ballistic-impact failure mechanisms in prototypical Friction Stir Welding (FSW) joints found in armor structures made of high-performance aluminum alloys (including solution-strengthened and age-hardenable aluminum alloy grades). It is argued that due to the large width of FSW joints found in thick aluminum-armor weldments, the overall ballistic performance of the armor is controlled by the ballistic limits of its weld zones (e.g. heat affected zone, the thermo-mechanically affected zone, the nugget, etc.). Thus, in order to assess the overall ballistic survivability of an armor weldment, one must predict/identify welding-induced changes in the material microstructure and properties and the operative failure mechanisms in different regions of the weld. Towards that end, a procedure is proposed in the present work which combines the results of the FSW process modeling, basic physical-metallurgy principles concerning microstructure/property relations and the fracture mechanics concepts related to the key blast/ballistic-impact failure modes. The utility of this procedure is demonstrated using the case of a solid-solution strengthened and cold-worked aluminum alloy armor FSW-weld test structure.;Keywords: Material modeling; Plasticity; Ballistic; Non-Linear Dynamics.
机译:搅拌摩擦焊(FSW)是一种固态金属连接工艺。在FSW中,一个(通常是)圆柱形工具销(在底部带有螺纹,在顶部带有一个圆盘形肩部终止)在两个牢固夹紧的板(放置在刚性背板支撑件上)之间被驱动。由于施加在肩部上的高的法向向下压力以及由于摩擦滑动和塑性变形,在工具/工件界面处以及在工具肩部下方的区域中产生了大量的热量。然后,将热塑化的工件材料挤出到行进工具周围,并锻制成工具后面的焊接接头。由于其固态特性和较低的工艺温度,与传统的熔焊工艺相比,FSW具有许多优势。在当前的工作中,先进的计算方法和工具用于研究FSW过程的三个特定方面:(a)物料流动和搅拌/混合:在FSW过程的数值模型中,FSW工具被视为拉格朗日分量而工件材料被视为欧拉成分。所采用的焊接过程的欧拉/拉格朗日耦合计算分析具有双向热机械特性(即,在热能平衡方程中,摩擦滑动/塑性功耗散被用作热源)通过与温度相关的材料属性,可以影响模型的机械方面。工件材料(AA5059,固溶强化和应变硬化铝合金)使用经典Johnson-Cook模型的修改版本表示(在该模型中,增加了应变硬化项,以便考虑到以下因素的影响)动态再结晶),而FSW工具材料(AISI H13工具钢)被建模为各向同性的线弹性材料。在分析过程中,研究了一些FSW关键工艺参数的影响(例如焊缝间距,工具倾斜角度和工具销尺寸)。将FSW过程中与物料流有关的结果与实验结果进行了比较。发现,在大多数情况下,在当前的FSW过程模型中都再现了实验观察到的材料流动特性。 (b)修改现有的用于FSW模拟的工件材料模型:Johnson-Cook强度材料模型经常用于涉及金属材料塑性变形的各种制造过程的有限元分析。该模型的主要吸引力来自其数学上的简单性和捕获一阶金属加工效应的能力(例如那些与塑性变形程度,变形速率和伴随温度的影响有关的效应)。但是,该模型在用于各种热加工过程的工程分析(即那些使用高于材料再结晶温度的温度)的工程分析中显示出严重的缺陷。这些缺点与以下事实有关:微观结构的变化包括:(i)由于退火/重结晶过程的操作而使位错密度不可逆地降低; (ii)由于高温暴露导致晶粒尺寸增加; (iii)动态再结晶引起的晶粒细化,未被模型考虑。在目前的工作中,尝试将基本的物理冶金原理与相关的动力学关系相结合,以适当地修改Johnson-Cook材料模型,以便该模型可用于金属热加工和热分析中。加盟流程。接下来,该模型用于帮助建立AA5083(一种非时效硬化,固溶强化,应变硬化/稳定化的Al-Mg-Mn合金)FSW焊缝中的工艺参数,材料微观结构和性能之间的关系; (c)在弹道冲击载荷条件下的FSW接头失效机制:对原型摩擦搅拌焊接(FSW)中的微观结构变化,材料力学性能的相关降低以及随之而来的弹道冲击失效机制进行了严格的评估)在由高性能铝合金制成的装甲结构中发现的接头(包括固溶强化和可时效硬化的铝合金等级)。据认为,由于在厚铝装甲焊件中发现的FSW接头宽度较大,装甲的整体弹道性能受其焊接区(例如热影响区,热机械影响区,掘金等)。因此,为了评估装甲焊件的总体弹道生存能力,必须预测/识别焊接引起的材料微观结构和性能变化以及焊缝不同区域的工作失效机理。为此目的,在本工作中提出了一种程序,该程序结合了FSW过程建模的结果,有关微观结构/性质关系的基本物理冶金原理以及与关键爆炸/弹道-冲击破坏模式有关的断裂力学概念。固溶强化和冷加工铝合金铠装FSW焊接试验结构的实例证明了该程序的实用性。可塑性;弹道非线性动力学。

著录项

  • 作者

    Arakere, Ajay Prasad.;

  • 作者单位

    Clemson University.;

  • 授予单位 Clemson University.;
  • 学科 Engineering Mechanical.
  • 学位 M.S.
  • 年度 2013
  • 页码 123 p.
  • 总页数 123
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:41:39

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号