首页> 外文学位 >Development of polymeric foam materials with improved mechanical and acoustic properties.
【24h】

Development of polymeric foam materials with improved mechanical and acoustic properties.

机译:具有改善的机械和声学性能的聚合物泡沫材料的开发。

获取原文
获取原文并翻译 | 示例

摘要

This thesis addresses the processing, morphology, mechanical properties, and acoustic properties of new polymeric foam materials. A batch foaming process, a rotational mold foaming process and a constrained mold foaming process were designed and applied in the producing of polymeric foams. Microcellular closed cell polymethyl-methacrylate (PMMA) foams were produced using the batch foaming process. The foam morphologies and mechanical properties such as elastic modulus, tensile strength and elongation at break were investigated by varying the foaming parameters. The PMMA microcellular foam showed superior mechanical properties in tensile strength and elongation at break over conventional foams. Nanoclay was used as reinforcement filler and a nucleation agent for PMMA in the batch foaming process. The nanoclay affected the foaming behavior and enhanced the mechanical properties of the microcellular PMMA foams. The PMMA nanocomposite foam with 0.5 wt % nanoclay exhibited optimized mechanical properties. Fine celled Polypropylene (PP) and low density Polyethylene (LDPE) foams were also produced using the rotational mold foaming. The processing parameters such as the particle sizes and processing time were important parameters in this process. The obtained PP foam exhibited a greatly improved energy absorption capacity. Opened cell PMMA foams were produced using a particulate leaching/gas foaming method for acoustic absorption applications. The foam morphology i.e. porosity and cell sizes were independently controlled by altering the processing settings. Consequently, the acoustic performance of the foams was manipulated. Finite element analysis was then employed to predict the macroscopic properties of polymeric foams correlated to their microstructure. The predicted elastic responses of both opened cell and closed cell foams showed great agreement with experimental results.
机译:本文研究了新型聚合物泡沫材料的加工,形态,力学性能和声学性能。设计了间歇发泡,旋转模具发泡和约束模具发泡工艺,并将其应用于聚合物泡沫的生产中。使用分批发泡工艺生产了微孔闭孔聚甲基丙烯酸甲酯(PMMA)泡沫。通过改变发泡参数来研究泡沫的形态和机械性能,例如弹性模量,拉伸强度和断裂伸长率。与传统泡沫相比,PMMA微孔泡沫在拉伸强度和断裂伸长率方面显示出优异的机械性能。在分批发泡过程中,纳米粘土被用作PMMA的补强填充剂和成核剂。纳米粘土影响发泡行为并增强了微孔PMMA泡沫的机械性能。具有0.5 wt%纳米粘土的PMMA纳米复合泡沫材料具有最佳的机械性能。细孔聚丙烯(PP)和低密度聚乙烯(LDPE)泡沫也使用旋转模具发泡生产。诸如粒径和加工时间的加工参数是该工艺中的重要参数。所得的PP泡沫显示出大大提高的能量吸收能力。开孔PMMA泡沫是使用微粒浸出/气体发泡法生产的,用于吸声应用。泡沫形态,即孔隙率和泡孔尺寸是通过改变加工设置来独立控制的。因此,操纵了泡沫的声学性能。然后采用有限元分析来预测与聚合物泡沫的微观结构相关的宏观性能。开孔泡沫和闭孔泡沫的预测弹性响应均与实验结果高度吻合。

著录项

  • 作者

    Fu, Jin.;

  • 作者单位

    University of Ottawa (Canada).;

  • 授予单位 University of Ottawa (Canada).;
  • 学科 Engineering Mechanical.
  • 学位 M.A.Sc.
  • 年度 2005
  • 页码 176 p.
  • 总页数 176
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:41:38

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号