首页> 外文学位 >Trefftz Voronoi Cells and SGBEM Super Elements---Towards An Efficient & Accurate Modeling of Inhomogeneities and Defects in Solids.
【24h】

Trefftz Voronoi Cells and SGBEM Super Elements---Towards An Efficient & Accurate Modeling of Inhomogeneities and Defects in Solids.

机译:Trefftz Voronoi细胞和SGBEM超级元素-致力于高效,准确地建模固体中的不均匀性和缺陷。

获取原文
获取原文并翻译 | 示例

摘要

This study focuses on developing efficient and highly accurate computational tools for modeling the mechanical behaviors of solids and structures with inhomogeneities and defects, such as inclusions, voids, cracks, etc. Inhomogeneities, voids, inclusions, and other defects are almost always accompanied by stresses and strains with discontinuities, high gradients and singularities, the accurate computation of which plays a central role in the fields of study, such as micromechanics, fracture mechanics, and damage mechanics. Traditional finite elements are incapable of capturing these stress/strain behaviors near voids, inclusions, and defects. To improve on this state-of-science, two efficient and highly accurate computational tools are developed in this thesis: Trefftz Voronoi Cells and SGBEM Super Elements, which are distinct but share some common features: they both avoid the use of simple polynomials around locations of stress concentration or singularity, and they both use boundary integral equations/ boundary variational principles to develop stiffness matrices, which can be readily implemented in to general-purpose finite element software.;Trefftz Voronoi Cells (TVCs) are developed to study the micromechanical behavior of inhomogeneous materials. Each TVC is a polygonal/polyhedral cell, which represents a grain of a material. A TVC can in itself be homogenous, or contain an arbitrary elastic or rigid inclusion of a different material, or a void. The inclusion or void may be circular or elliptical for two-dimensional problems, and may be spherical or ellipsoidal for three-dimensional problems, or may be of totally an arbitrary shape. The development of the various TVCs is accomplished by using a complete Trefftz trial displacement field (which completely satisfies the Navier equations of elasticity) for the matrix/inclusion material, and a polynomial trial function at the boundary of the Cell. TVCs can very accurately capture the stress concentrations around the inclusions and voids, with a very little burden of meshing and computation.;Symmetric Galerkin Boundary Element Method (SGBEM) Super Elements are developed for studying solids and structures with cracks, and arbitrarily-shaped inclusions/voids. Each Super Element can have an arbitrarily-shaped outer boundary, and one or several arbitrarily-shaped inner boundaries. Each Super Element can also have an arbitrary numbers of cracks within it. The cracks can be center cracks, edge cracks, or branching/intersecting cracks. SGBEM Super Elements use polynomial trial functions for the displacements and tractions at the boundary. In the development of each Super Element, weakly-singular Symmetric Galerkin Boundary Integral Equations are used. SGBEM Super Elements can accurately capture stress concentration around arbitrarily-shaped inclusions and voids. SGBEM Super Elements can also accurately compute the stress intensity factors of various types of cracks, and also accurately predict their non-planar, mixed -mode fatigue growth, without the cumbersome mesh refinement schemes with simply-enriched crack elements which are currently made widely popular by Belytschko and others, under the name of XFEM. We find that the present SGBEM based methods are far more accurate and at the same time far more computationally efficient, than the XFEM methods, for analyzing voids, inclusions, cracks, and the non-planar fatigue-growth of cracks.
机译:这项研究致力于开发高效且高度准确的计算工具,以对具有非均质性和缺陷(例如夹杂物,空隙,裂缝等)的实体和结构的力学行为进行建模。非均质性,空隙,夹杂物和其他缺陷几乎总是伴随着应力以及具有不连续性,高梯度和奇异性的应变,其精确计算在诸如微力学,断裂力学和损伤力学等研究领域中起着核心作用。传统的有限元无法捕获空隙,夹杂物和缺陷附近的这些应力/应变行为。为了改善这种科学水平,本文开发了两个有效且高度准确的计算工具:Trefftz Voronoi单元和SGBEM超级元素,它们是截然不同但具有一些共同特征的:它们都避免在位置周围使用简单多项式应力集中或奇异性,它们都使用边界积分方程/边界变分原理来开发刚度矩阵,可以很容易地在通用有限元软件中实现。; Trefftz Voronoi细胞(TVC)的开发是为了研究微机械行为不均匀的材料。每个TVC是一个多边形/多面体单元,代表一种材料的颗粒。 TVC本身可以是同质的,也可以包含不同材料的任​​意弹性或刚性内含物或空隙。对于二维问题,包含物或空隙可以是圆形或椭圆形的,而对于三维问题,包含物或空隙可以是球形或椭圆形的,或者可以完全是任意形状。各种TVC的开发是通过使用基质/包含材料的完整Trefftz试验位移场(完全满足Navier弹性方程)和在单元边界处的多项式试验函数来完成的。 TVC可以非常精确地捕获夹杂物和空隙周围的应力集中,几乎没有网格划分和计算负担。;对称伽勒金边界元方法(SGBEM)开发了超级元素,用于研究具有裂纹以及任意形状的夹杂物的实体和结构/ void。每个超级元素可以具有任意形状的外部边界,以及一个或多个任意形状的内部边界。每个超级元素中也可以包含任意数量的裂缝。裂纹可以是中心裂纹,边缘裂纹或分支/相交裂纹。 SGBEM Super Elements使用多项式试验函数来计算边界处的位移和牵引力。在每个超级元素的开发中,都使用了弱奇异的对称Galerkin边界积分方程。 SGBEM Super Elements可以准确捕获任意形状的夹杂物和空隙周围的应力集中。 SGBEM Super Elements还可以准确计算各种类型的裂纹的应力强度因子,并且还可以准确预测其非平面,混合模式的疲劳增长,而无需进行繁琐的细化网格细化方案,而该方案目前仅广受人们欢迎由Belytschko和其他人以XFEM的名义发行。我们发现,目前的基于SGBEM的方法比XFEM方法更准确,同时计算效率更高,可用于分析空隙,夹杂物,裂纹和裂纹的非平面疲劳增长。

著录项

  • 作者

    Dong, Leiting.;

  • 作者单位

    University of California, Irvine.;

  • 授予单位 University of California, Irvine.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 299 p.
  • 总页数 299
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:41:35

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号