首页> 外文学位 >Equilibrium Field Theoretic and Dynamic Mean Field Simulations of Inhomogeneous Polymeric Materials
【24h】

Equilibrium Field Theoretic and Dynamic Mean Field Simulations of Inhomogeneous Polymeric Materials

机译:非均相高分子材料的平衡场理论和动态平均场模拟

获取原文
获取原文并翻译 | 示例

摘要

Inhomogeneous polymeric materials is a large family of promising materials including but limited to block copolymers (BCPs), polymer nanocomposites (PNCs) and microscopically confined polymer films. The promising application of the materials originates from the materials' unique microstructures, which offer enhanced mechanical, thermal, optical and electrical properties to the materials. Due to the complex interactions and the large parameter space, behaviors of the microstructures formed by grafted nanoparticles and nanorods in PNCs are difficult to understand. Separately, because of relatively weak interactions, the microstructures are typically achieved through rapid processing that are kinetically controlled and beyond equilibrium. However, efficient simulation framework to study nonequilbrium dynamics of the materials is currently not available. To attack the first difficulty, I extended an efficient simulation framework, polymer nanocomposite field theory (PNC-FT), to incorporate grafted nanoparticles and nanorods. This extended framework is demonstrated against existing experimental studies and implemented to study how the nanoparticle design affects the nanoparticle distribution in binary homopolymer blends. The grafted nanoparticle model is also used as a platform to adopt an advanced optimization method to inversely design nanoparticles which are able to self-assemble into targeted two dimensional lattices. The nanorod model under PNC-FT framework is used to investigate the design of nanorod and block copolymer thin films to control the nanorod distribution. To attack the second difficulty, I established an efficient framework (SCMF-LD) based on a recently proposed dynamic mean field theory and used SCMF-LD to study how to kinetically control the nanoparticle distribution at the end of solvent annealing block copolymer thin films. The framework is then extended to incorporate hydrodynamics (SCMF-DPD) and the extended framework is implemented to study morphology development in phase inversion processing polymer thin films, where hydrodynamic effects play an important role. By exploring both equilibrium and nonequilibrium properties in a spectrum of inhomogeneous polymeric material systems, I successfully extended PNC-FT and established SCMF-LD and SCMF-DPD frameworks, which are expected to be efficient and powerful tools in studies of inhomogeneous polymeric material design and processing.
机译:非均质聚合物材料是一大类有前途的材料,包括但不限于嵌段共聚物(BCP),聚合物纳米复合材料(PNC)和微观限制的聚合物薄膜。材料的有前途的应用源于材料独特的微观结构,这种独特的微观结构为材料提供了增强的机械,热,光学和电性能。由于复杂的相互作用和较大的参数空间,在PNC中由接枝的纳米颗粒和纳米棒形成的微结构的行为难以理解。另外,由于相互作用相对较弱,通常通过动力学控制且超出平衡的快速加工来获得微观结构。但是,目前尚无有效的模拟框架来研究材料的非氮化动力学。为了解决第一个难题,我扩展了一个有效的模拟框架,即聚合物纳米复合材料场论(PNC-FT),以结合接枝的纳米颗粒和纳米棒。此扩展框架针对现有的实验研究进行了演示,并用于研究纳米颗粒设计如何影响二元均聚物共混物中纳米颗粒的分布。接枝的纳米颗粒模型还用作采用先进优化方法的平台,以反向设计能够自组装成目标二维晶格的纳米颗粒。使用PNC-FT框架下的纳米棒模型研究了纳米棒和嵌段共聚物薄膜的设计,以控制纳米棒的分布。为了解决第二个难题,我根据最近提出的动态平均场理论建立了一个有效的框架(SCMF-LD),并使用SCMF-LD研究如何在溶剂退火嵌段共聚物薄膜的末端动力学控制纳米颗粒的分布。然后将该框架扩展为包含流体力学(SCMF-DPD),并实施扩展框架以研究相转化处理聚合物薄膜中的形态学发展,其中流体动力学效应起着重要作用。通过探索一系列非均质聚合材料系统中的平衡和非平衡性质,我成功地扩展了PNC-FT并建立了SCMF-LD和SCMF-DPD框架,这些框架有望成为研究非均质聚合材料设计和开发的有效和强大工具。处理。

著录项

  • 作者

    Chao, Huikuan.;

  • 作者单位

    University of Pennsylvania.;

  • 授予单位 University of Pennsylvania.;
  • 学科 Chemical engineering.;Physical chemistry.;Physics.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 180 p.
  • 总页数 180
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:36:47

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号