首页> 外文学位 >Chemical Modulation of Chaperone-Mediated Autophagy by Novel Retinoic Acid Derivatives.
【24h】

Chemical Modulation of Chaperone-Mediated Autophagy by Novel Retinoic Acid Derivatives.

机译:新型视黄酸衍生物对伴侣蛋白介导的自噬的化学调节。

获取原文
获取原文并翻译 | 示例

摘要

Chaperone-mediated autophagy (CMA) contributes to cellular quality control and the cellular response to stress through the selective degradation of cytosolic proteins in lysosomes. Decrease in CMA activity occurs in aging and in age-related disorders (i.e. neurodegenerative diseases, diabetes, etc.). Although prevention of this age-dependent decline through genetic manipulation in mouse has proven beneficial, chemical modulation of CMA is not currently possible, due in part to the lack of information on the signaling mechanisms that modulate this pathway. In this work, we have identified that signaling through the retinoic acid receptor alpha inhibits CMA and have used computerized molecular dynamics simulations along with structure activity relationship design chemistry, to develop synthetic derivatives of all-trans-retinoic acid to specifically neutralize this inhibitory effect. We demonstrate that chemical enhancement of CMA with these novel compounds protects cells from oxidative stress and from proteotoxicity, supporting their potential therapeutic value in conditions in which reduced CMA contributes to cell malfunctioning and disease.;The goal of this thesis research was to determine how retinoic acid signaling functions in CMA regulation and to design small molecules that could function as activators or inhibitors of CMA.;In the first part of this study, we have focused on the RARα because it is important in oxidative stress, neurodegeneration and neurodevelopment, conditions in which CMA activity also changes. Here, we have completed the following studies: We analyzed the consequences of a decrease or increase of RA-mediated signaling on autophagy. To this purpose we have generated stable cell lines knocked-down for the RARa (decreased signaling) and treated cells with all-trans-retinoic acid (ATRA) (increased signaling). We have found that reduction of signaling through RARa reduces macroautophagy activity and increases CMA, whereas treatment with ATRA has the opposite effects. The inhibitory mechanism of ATRA on CMA was dependent on RARa whereas the effect on macroautophagy seemed to involve additional RAR's.;In the second part of these studies, our previous results motivated us to attempt designing compounds that by targeting RARa could help separate their effect on the different autophagic pathways. Therefore, in this part we focused on the design and synthesis of a library of 29 compounds targeting the RARa. 1. Primary screening: In the initially screening for lead molecules, we used NIH 3T3 mouse fibroblasts in culture and tested the effect of each of the compounds on: CMA using a photo-switchable CMA reporter. 2. Total intracellular protein degradation by metabolic labeling and pulse and chase experiments. 3. Macroautophagy by analysis of LC3-flux.;These studies have allowed us to narrow the list of compounds with a stimulatory effect only on CMA but not on macroautophagy from 29 to 3 target molecules.;Validation studies: We analyzed the effect of the CMA-modifiers on RARa knock-down (KD) cells to determine that the effect on CMA was through RARa signaling and in LAMP-2A KD cells to determine that the effect was specifically through CMA.;Mechanism of action: We have attempted to investigate the mechanism of action by which the RARa targeting compounds modulate CMA. First, we have experimentally determined that, as anticipated from our previous results, the three lead molecules function as antagonist of signaling through the RARa, and we verified that they do not affect RXR signaling. To determine the basis behind their stimulatory effect on CMA, we have first discarded that their effect is caused by inducing oxidative stress thereby activating CMA, or by directly acting on the lysosomal compartment. The three lead compounds have a very discrete upregulating effect on the expression of CMA components such as LAMP-2A.;Practical application: We have demonstrated a protective effect of the novel CMA modulators in NIH 3T3 cells against stressors that require maximal activation of this pathway, such as oxidative stress or proteotoxicity, and validated that this effect depends on RARa and active CMA.;Overall, this study contributes to the advancement and our understanding of modulation of Chaperone-Mediated Autophagy. Our findings could potentially impact the field of autophagy and contribute to the therapeutic treatment of neurodegenerative diseases such Parkinson's disease and aging. Future studies will determine if the target compounds generated in our studies could potentially be used in clinical trials.
机译:伴侣蛋白介导的自噬(CMA)通过选择性降解溶酶体中的胞质蛋白,有助于细胞质量控制和细胞对应激的反应。 CMA活性降低发生在衰老和与年龄相关的疾病(即神经退行性疾病,糖尿病等)中。尽管已证明通过基因操纵小鼠预防年龄依赖性下降是有益的,但目前尚无法对CMA进行化学调节,部分原因是缺乏有关调节该途径的信号传导机制的信息。在这项工作中,我们已经确定了通过视黄酸受体α发出的信号抑制了CMA,并已使用计算机分子动力学模拟以及结构活性关系设计化学来开发全反式视黄酸的合成衍生物,以特异性地中和这种抑制作用。我们证明了用这些新型化合物对CMA进行化学增强可保护细胞免受氧化应激和蛋白毒性的影响,从而在降低的CMA导致细胞功能异常和疾病的情况下支持其潜在的治疗价值。酸信号在CMA调节中起作用,并设计小分子作为CMA的激活剂或抑制剂。在本研究的第一部分中,我们将重点放在RARα上,因为它在氧化应激,神经退行性变和神经发育,疾病状态中很重要。哪个CMA活动也会更改。在这里,我们完成了以下研究:我们分析了RA介导的信号传导减少或增加对自噬的后果。为此目的,我们已经产生了稳定的针对RARa(降低的信号传导)的细胞系,并用全反式维甲酸(ATRA)处理了细胞(提高了信号传导)。我们已经发现,通过RARa减少信号传导可降低巨噬细胞自噬活性并增加CMA,而用ATRA治疗则具有相反的效果。 ATRA对CMA的抑制机制取决于RARa,而对宏观自噬的影响似乎与其他RAR有关。在这些研究的第二部分中,我们先前的研究结果促使我们尝试设计通过靶向RARa可以帮助分离其作用的化合物。不同的自噬途径。因此,在这一部分中,我们集中于29种针对RARa的化合物的库的设计和合成。 1.初步筛选:在最初筛选先导分子时,我们在培养物中使用了NIH 3T3小鼠成纤维细胞,并使用光敏CMA报告分子测试了每种化合物对CMA的作用。 2.通过代谢标记和脉冲和追踪实验,总细胞内蛋白质降解。 3.通过LC3-通量分析进行宏观自噬;这些研究使我们能够将仅对CMA具有刺激作用但对宏观自噬没有刺激作用的化合物的范围从29个靶分子缩小到3个。验证研究:我们分析了CRA修饰剂对RARa敲低(KD)细胞的影响,以确定其对CMA的影响是通过RARa信号传导,而在LAMP-2A KD细胞中,其修饰是通过CMA来确定的。;作用机理:我们试图研究RARA靶向化合物调节CMA的作用机理。首先,我们通过实验确定,正如我们先前的结果所预期的那样,这三个前导分子充当了通过RARa发出信号的拮抗剂,并且我们证实了它们不影响RXR信号。为了确定它们对CMA的刺激作用的基础,我们首先放弃了它们的作用是由诱导氧化应激从而激活CMA或直接作用于溶酶体区室引起的。这三种前导化合物对CMA成分(例如LAMP-2A)的表达具有非常离散的上调作用。实际应用:我们已经证明了新型CMA调节剂在NIH 3T3细胞中对需要最大程度激活该途径的应激物的保护作用,例如氧化应激或蛋白毒性,并验证了这种作用取决于RARa和活性CMA。总体而言,本研究有助于提高和了解分子伴侣介导的自噬调节作用。我们的发现可能会影响自噬领域,并有助于神经退行性疾病(如帕金森氏病和衰老)的治疗。未来的研究将确定我们的研究中产生的目标化合物是否可能用于临床试验。

著录项

  • 作者

    Anguiano, Jaime.;

  • 作者单位

    Yeshiva University.;

  • 授予单位 Yeshiva University.;
  • 学科 Biology Molecular.;Biology Cell.;Chemistry Organic.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 187 p.
  • 总页数 187
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号