首页> 外文学位 >Microfluidic Concentration Gradient Generation and Integrated Magnetic Sorting of Microparticles.
【24h】

Microfluidic Concentration Gradient Generation and Integrated Magnetic Sorting of Microparticles.

机译:微流体浓度梯度产生和微粒的集成磁选。

获取原文
获取原文并翻译 | 示例

摘要

Microfluidic systems, with their feature size similar to that of biological cells, have great potential for cell manipulation and interrogation. On the other hand, the process of drug discovery involves vast amount of tests of candidate drug molecules with cells, and hence requires intensive manipulation and interrogation of cells. Therefore, it is conceivable that microfluidics can be and should be sufficiently exploited to facilitate drug discovery process. This dissertation investigates two of the most frequently performed cell operations in drug discovery, which are often performed in series, i.e., chemical stimulation of cells (cell treatment and chemotaxis) and cell sorting. For chemical stimulation of cells, rapid and novel designs of concentration gradient generation (CGG) devices are presented; for cell sorting, a magnetically controlled cell capture and isolation device is created.;The most prevalent type of CGG devices, i.e., complete mixing-based laminar-flow CGG devices, involves massive channel networks. The design of alternative laminar-flow CGG devices suffers lack of efficient and systematic design framework, and is currently implemented through time-consuming numerical simulations. Therefore, we first propose passive mixing-based laminar-flow CGG devices, for which an analytical diffusion-convection model is developed and incorporated into an iterative design framework to achieve modular design. Secondly, to eliminate the undesirable stimulation of fluid flow on cells as existing in both complete and partial mixing-based laminar-flow CGG devices, a novel class of CGG devices featuring two-layer design sandwiching a semipermeable membrane is presented. The devices effectively eliminate fluid flow while maintain a stable concentration gradient in the gradient generation region. Thirdly, the flow-free CGG devices are extended to realize arbitrary concentration gradients, which significantly enhance the CGG capability of the devices. The designs of all CGG devices are realized through microfabrication and tested against complex concentration gradients. The generated gradients generally agree with the specified gradients in less than 10%.;Magnetic-activated cell sorting (MACS) is a high-throughput cell sorting scheme that recognizes cells specifically by their membrane proteins. The quality of magnetic incubation largely determines the final separation efficiency. To enhance magnetic incubation prior to separation, a magnetic incubator is designed utilizing a target acquisition by repetitive traversal (TART) mechanism, which significantly improves target capture efficiency and reduces incubation time. The magnetic incubator module is then integrated to the separator module, with both modules using the same magnetic setup, which facilitates the entire MACS process and promotes the target separation efficiency to over 90%. The microfluidic methods and tools developed in this work are potentially used for cell manipulation and interrogation and thus can be expected to facilitate the drug discovery process that involves intensive cell operations and testing.
机译:具有与生物细胞相似的特征尺寸的微流体系统,在细胞操纵和审讯方面具有巨大的潜力。另一方面,药物发现的过程涉及细胞对候选药物分子的大量测试,因此需要对细胞进行密集的操作和询问。因此,可以想象的是,可以并且应该充分利用微流体来促进药物发现过程。本论文研究了药物发现中最常执行的两种细胞操作,它们通常是连续进行的,即化学刺激细胞(细胞治疗和趋化性)和细胞分选。对于细胞的化学刺激,提出了浓度梯度生成(CGG)设备的快速新颖的设计。为了进行细胞分选,创建了一个磁控细胞捕获和隔离设备。;最流行的CGG设备类型,即完全基于混合的层流CGG设备,涉及大规模的通道网络。替代层流CGG器件的设计缺乏有效和系统的设计框架,目前通过耗时的数值模拟来实现。因此,我们首先提出基于无源混合的层流CGG器件,为此,开发了一种分析扩散对流模型并将其纳入迭代设计框架中以实现模块化设计。其次,为了消除在完全和部分基于混合的层流CGG设备中都存在的对细胞上的流体流动的不利刺激,提出了一种新型的CGG设备,其特征在于夹有半透膜的两层设计。该设备有效消除了流体流动,同时在梯度生成区域中保持了稳定的浓度梯度。第三,扩展了无流量CGG设备,以实现任意的浓度梯度,从而显着增强了设备的CGG能力。所有CGG设备的设计都是通过微细加工实现的,并针对复杂的浓度梯度进行了测试。生成的梯度通常与指定的梯度小于10%一致。磁激活细胞分选(MACS)是一种高通量的细胞分选方案,可通过其膜蛋白特异性识别细胞。磁性孵育的质量在很大程度上决定了最终的分离效率。为了增强分离前的磁孵育,设计了一种磁孵化器,该靶标利用通过重复遍历(TART)机制获取的靶标来显着提高靶标捕获效率并缩短了孵育时间。然后将磁性培养箱模块集成到分离器模块,两个模块使用相同的磁性设置,这有助于整个MACS过程,并将目标分离效率提高到90%以上。在这项工作中开发的微流体方法和工具潜在地可用于细胞操作和询问,因此有望促进涉及密集细胞操作和测试的药物发现过程。

著录项

  • 作者

    Zhou, Yao.;

  • 作者单位

    Columbia University.;

  • 授予单位 Columbia University.;
  • 学科 Engineering Biomedical.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 164 p.
  • 总页数 164
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号