首页> 外文学位 >Hybrid photothermal technique for microscale thermal conductivity measurement.
【24h】

Hybrid photothermal technique for microscale thermal conductivity measurement.

机译:混合光热技术用于微尺度热导率测量。

获取原文
获取原文并翻译 | 示例

摘要

Most existing thermal conductivity measurement techniques of nuclear fuel only measure the overall effective thermal conductivity of the fuel, cladding, and gap, with low spatial-resolution. However, damage to nuclear fuel microstructure caused by neutron-irradiation can result in sharp, local changes of thermal conductivity. Additionally, extremely large temperature-gradients (∼1600 K/cm) from the fuel centerline to the coolant result in similar gradients of thermal conductivity. Therefore, in pursuit of greater understanding of nuclear fuel performance, the objective of this study was to develop a non-contact thermal conductivity measurement technique to provide micron-sized spatial-resolution capability. Based on photothermal techniques and using both frequency and spatial-domain photothermal reflectance methods, an experimental measurement system was designed, built, and tested for measuring the thermal conductivity of a thin-film coated material with micron resolution. This hybrid method involves separate measurement of thermal diffusivity, D, and thermal effusivity, e, from which, thermal conductivity, k = (e2/D) 1/2 is calculated. A detailed parametric analysis using analytical solutions and a numerical model has been performed to guide the experiment and optimize measurement conditions. The measurement system was validated using two calibration samples having thermal conductivities at both the upper and lower limit of the common range of nuclear fuels (∼1 -- 10 W·m· -1K·-1). Sources of experimental errors are discussed qualitatively and the uncertainty of the measurement system for the thermal conductivity range of interest is quantified. The measured error is found to be about 10%, and up to close to 20% for the worst case (upper limit of k range).;An extended application of the modulated laser excitation technique is explored to measure mechanical properties of solid materials. This technique involves obtaining the natural frequencies of different vibrational modes of a cantilever beam sample allowing for the extraction of the elasticity constants of the material. From Neumann's principle, the number of independent elasticity constants is dependent on the symmetry of the material structure. Specifically, symmetries of crystalline materials and composite materials are analyzed. Experimental results of two validation samples with cubic crystal system agreed well with the published values with experimental errors of ∼10%.
机译:核燃料的大多数现有热导率测量技术仅以低空间分辨率测量燃料,包壳和间隙的整体有效热导率。但是,中子辐照对核燃料微结构的破坏会导致局部热导率急剧变化。此外,从燃料中心线到冷却液的极大的温度梯度(约1600 K / cm)会导致相似的导热率梯度。因此,为了进一步了解核燃料的性能,本研究的目的是开发一种非接触式热导率测量技术,以提供微米级的空间分辨能力。基于光热技术,并使用频域和空间域光热反射方法,设计,构建并测试了实验测量系统,用于测量微米分辨率的薄膜涂层材料的热导率。这种混合方法涉及对热扩散率D和热扩散率e的单独测量,由此计算出热导率k =(e2 / D)1/2。使用分析解决方案和数值模型进行了详细的参数分析,以指导实验并优化测量条件。使用两个在导热油的常规范围的上限和下限均具有热导率的校准样品(〜1-10 W·m·-1K·-1)验证了测量系统的有效性。定性地讨论了实验误差的来源,并对感兴趣的热导率范围的测量系统的不确定性进行了量化。发现测量的误差约为10%,最坏的情况下(k范围的上限)可达20%。研究了调制激光激发技术的扩展应用以测量固体材料的机械性能。该技术涉及获得悬臂梁样品不同振动模式的固有频率,从而可以提取材料的弹性常数。根据诺伊曼原理,独立弹性常数的数量取决于材料结构的对称性。具体地,分析晶体材料和复合材料的对称性。两个具有立方晶体系统的验证样品的实验结果与已公布的值非常吻合,实验误差约为10%。

著录项

  • 作者

    Hua, Zilong.;

  • 作者单位

    Utah State University.;

  • 授予单位 Utah State University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 118 p.
  • 总页数 118
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号