首页> 外文学位 >Fabrication and integration of permanent magnet materials into MEMS transducers.
【24h】

Fabrication and integration of permanent magnet materials into MEMS transducers.

机译:永磁材料的制造和集成到MEMS换能器中。

获取原文
获取原文并翻译 | 示例

摘要

Microscale permanent magnets (PM) are a key building block for magnetically based microelectromechanical systems (MEMS), such as sensors, actuators, and energy converters. However, the inability to concurrently achieve good magnetic properties and an integrated magnet fabrication process hinders the development of magnetic MEMS. To address this need, this dissertation develops methods for wafer-level microfabrication of thick (10--500+ microm), high-performance, permanent magnets using low-temperature (180 °C) process steps. These methods and materials are then used to demonstrate fully batch-fabricated magnetic MEMS transducers.Two methods to fabricate micromagnets are developed: electroplating of Co-rich Co-Pt magnets into photoresist-defined molds and micro-packing of rare-earth magnetic powders to form wax-bonded magnets embedded in silicon. Patterned micromagnets with excellent magnetic properties and process-flow compatibility are demonstrated. Electroplated Co-Pt micromagnets with thickness up to 10 microm exhibit out-of-plane anisotropy with coercivities and energy products of 330 kA/m and 69 kJ/m3, respectively. Wax-bonded Nd-Fe-B micromagnets (500 x 500 x 320 microm3) exhibit a coercivity of 737 kA/m and a maximum energy product of 17 kJ/m3 with isotopic behavior.The wax-bonded powder magnets are then integrated into MEMS fabrication processes to batch-fabricate various electrodynamic transducer prototypes. A cantilever-type microtransducer achieves a 2.7 microm vertical deflection at a driving current of 5.5 mArms at 100 Hz. A piston-type transducer with elastomeric membrane obtains a 2.2 microm vertical displacement at a driving current of 670 mArms at 200 Hz. These devices demonstrate the integrability of wax-bonded Nd-Fe-B powder magnets into microscale electromechanical transducers.Electromechanical lumped element models are then developed for the piston-type electrodynamic actuators. The models enable prediction of the device performance as an electroacoustic actuator (microspeaker) and as a mechanoelectrical generator (vibrational energy harvester). Then, both the acoustic and energy harvesting performance of the prototype transducers are experimentally measured to verify the LEM models. The validated models provide a design tool for further design and development of these types of micromagnetic MEMS devices.
机译:微型永磁体(PM)是基于磁性的微机电系统(MEMS)(例如传感器,致动器和能量转换器)的关键组成部分。然而,无法同时获得良好的磁性能和集成的磁体制造工艺阻碍了磁MEMS的发展。为了满足这一需求,本论文开发了使用低温(& 180&degC)工艺步骤对厚(10--500 + microm)高性能永磁体进行晶圆级微加工的方法。然后使用这些方法和材料演示了完全批量制造的磁性MEMS换能器。开发了两种制造微磁体的方法:将富钴Co-Pt磁体电镀到光刻胶定义的模具中,然后将稀土磁粉微包装成形成嵌入硅的蜡粘结磁体。演示了具有出色磁性能和工艺流程兼容性的图案化微磁铁。厚度高达10微米的电镀Co-Pt微磁体表现出面外各向异性,其矫顽力和能量积分别为330 kA / m和69 kJ / m3。蜡粘结的Nd-Fe-B微磁铁(500 x 500 x 320 microm3)的矫顽力为737 kA / m,最大能量积为17 kJ / m3,具有同位素行为,然后将蜡粘结的粉末磁铁集成到MEMS中批量制造各种电动换能器原型的制造过程。悬臂式微型换能器在100 Hz的驱动电流为5.5 mArms时实现2.7微米的垂直偏转。具有弹性膜的活塞式换能器在200 Hz的驱动电流为670 mArms时获得2.2微米的垂直位移。这些设备证明了粘结蜡的Nd-Fe-B粉末磁体可集成到微型机电转换器中,然后为活塞式电动执行器开发了机电集总元件模型。这些模型可以预测作为电声致动器(微型扬声器)和机电发电机(振动能量收集器)的设备性能。然后,通过实验测量原型换能器的声学和能量采集性能,以验证LEM模型。经过验证的模型为进一步设计和开发这些类型的微磁MEMS器件提供了一种设计工具。

著录项

  • 作者

    Wang, Naigang.;

  • 作者单位

    University of Florida.;

  • 授予单位 University of Florida.;
  • 学科 Engineering Electronics and Electrical.Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 148 p.
  • 总页数 148
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号