首页> 外文学位 >Nanomaterials synthesis and nanostructure assembly for sensitized solar cells.
【24h】

Nanomaterials synthesis and nanostructure assembly for sensitized solar cells.

机译:用于敏化太阳能电池的纳米材料合成和纳米结构组装。

获取原文
获取原文并翻译 | 示例

摘要

After TiO2 nanocrystals were put to use in dye sensitized solar cell, the power conversion efficiency (PCE) has been delivered to above 10% at the current stage after persistent optimization. Nanomaterial synthesis, nanostructure assembly and interfacial engineering have played and will continue to play an imperative role in improving the performance of sensitized solar cell. For a significant improvement of PCE, the materials and nanostructure should be multifunctional and highly compatible in the device. In my thesis project, I focused on the understanding and the building up of photoanode materials to improve light harvesting and charge collection, and ultimately improve the overall solar cell performance.;In chapter 3, I report the development of a novel double layered photoanode for dye sensitized solar cell made of highly crystalline TiO2 octahedral nanocrystals and agglutinate mesoporous TiO2 microspheres. This double layered photoanode has taken into consideration a number of disparate factors aiming at enhancing the overall DSSC performance. Drawing on the judicious combination of materials synthesis and engineering of nano-architectures and interfaces, solar cells based on this double layered structure have achieved 8.72% power conversion efficiency even with simple device fabrication procedures, showing promise as a new photoanode design for high efficiency dye sensitized solar cells.;In chapter 4, I have significantly improved open circuit voltage and fill factor with Pt counter electrode of quasi-solid state quantum dot sensitized solar cells (QDSSCs) by achieving compact coverage of QDs on TiO2 matrix through a linker seeding chemical bath deposition process, leading to 4.23% power conversion efficiency, nearly two times that with conventionally deposited control photoanode.;Chapter 5 demonstrates the first use of a quasi-quantum well (QW) structure (ZnSe/CdSe/ZnSe) as the sensitizer, which is quasi-epitaxially deposited on ZnO tetrapods. Such a novel photoanode architecture has attained 6.20% PCE, among the highest reported to date for this type of SSSCs. This study together with the impedance spectra and intensity modulated photocurrent spectroscopies supports a core-shell two-channel transport mechanism in this type of solar cells and further suggests that the electron transport along sensitizer can be considerably accelerated by the QW structure employed.;The research in chapter 6 builds on the work of the QW structure in Chapter 5. Because the previous aqueous synthesis of the QW structure failed to generate photoluminescence (PL) from CdSe, presumably stemming from the low crystallinity and numerous defects, I opted to develop an organic solution process coupled with a layer-by-layer approach at much higher temperature to synthesize the QW structure. Well to my expectation, strong PL was observed even with the naked eye. Through optimization of the QW structure, the ZnSe/CdSe/ZnSe sandwiched QW supported on the ZnO tetrapod (ZnO/QW) showed 17 times stronger PL than the ZnSe/CdSe heterojunction (HJ) supported on the ZnO tetrapod (ZnO/HJ) at single particle level. Ensemble measurements also showed 10 times stronger PL of the former than the latter. (Abstract shortened by UMI.).
机译:TiO2纳米晶体用于染料敏化太阳能电池后,经过持续优化,当前阶段的功率转换效率(PCE)已达到10%以上。纳米材料合成,纳米结构组装和界面工程已经并且将继续在提高敏化太阳能电池的性能方面起着至关重要的作用。对于PCE的重大改进,材料和纳米结构应具有多功能性,并且在设备中应具有高度的兼容性。在我的论文项目中,我专注于对光电阳极材料的理解和构建,以改善光的收集和电荷收集,并最终改善整体太阳能电池的性能。在第三章中,我报告了一种新型的双层光电阳极的开发。染料敏化太阳能电池,由高度结晶的TiO2八面体纳米晶体和凝集的介孔TiO2微球组成。这种双层光阳极已经考虑了许多旨在提高整体DSSC性能的不同因素。利用材料合成以及纳米结构和界面工程的明智组合,基于这种双层结构的太阳能电池即使通过简单的器件制造程序也可以实现8.72%的功率转换效率,显示出有望成为用于高效染料的新型光阳极设计在第4章中,我通过使用连接子注入化学剂实现了TiO2基质上QD的紧凑覆盖,从而大大改善了准固态量子点敏化太阳能电池(QDSSCs)的Pt对电极的开路电压和填充系数。浴沉积工艺,导致4.23%的功率转换效率,几乎是传统沉积的控制光电阳极的两倍。;第5章演示了首次使用准量子阱(QW)结构(ZnSe / CdSe / ZnSe)作为敏化剂,准外延沉积在ZnO四脚架上。这种新颖的光电阳极架构已达到6.20%的PCE,是迄今为止迄今为止报道的此类SSSC的最高水平。这项研究与阻抗谱和强度调制的光电流谱一起,支持了这种类型的太阳能电池中的核-壳两通道传输机制,并进一步表明,采用的QW结构可以大大促进沿敏化剂的电子传输。第6章中的QW结构以第5章中的QW结构为基础。由于QW结构的先前水合成未能从CdSe产生光致发光(PL),大概是由于其低结晶度和许多缺陷,所以我选择开发一种有机物。固溶过程与更高温度下的逐层方法相结合以合成QW结构。出乎我的意料,即使用肉眼也能观察到强烈的PL。通过优化QW结构,负载在ZnO四脚架(ZnO / QW)上的ZnSe / CdSe / ZnSe夹层QW(ZnO / QW)的PL强度是ZnO四脚架(ZnO / HJ)上支撑的ZnSe / CdSe异质结(HJ)的17倍。单粒子水平。集合测量还显示,前者的PL比后者强10倍。 (摘要由UMI缩短。)。

著录项

  • 作者

    Yan, Keyou.;

  • 作者单位

    Hong Kong University of Science and Technology (Hong Kong).;

  • 授予单位 Hong Kong University of Science and Technology (Hong Kong).;
  • 学科 Materials science.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 190 p.
  • 总页数 190
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号