首页> 外文学位 >Mechanistic investigations of class I ribonucleotide reductases and related oxygen-utilizing metalloenzymes.
【24h】

Mechanistic investigations of class I ribonucleotide reductases and related oxygen-utilizing metalloenzymes.

机译:I类核糖核苷酸还原酶和相关的利用氧气的金属酶的机理研究。

获取原文
获取原文并翻译 | 示例

摘要

Enzymes, nature's preferred catalysts, often effect remarkable transformations of their substrates, and the mechanistic elucidation of these catalysts has significantly advanced our understanding of biological processes. Our work is focuses on the detailed characterization of enzymes operating in an aerobic environment that utilize one or more transition metals as cofactors to facilitate transformation of their substrates. The approach of choice to facilitate the mechanistic elucidation of these enzymatic reactions involves the capture of transient species (reactive intermediates) that occur along each reaction sequence, and the kinetic and spectroscopic characterization of each captured species. A major focus of this thesis involves mechanistic investigations of a classic O2-utilizing metalloenzyme, ribonucleotide reductase (RNR).;By catalyzing the conversion of ribonucleotides to deoxyribonucleotides [ND(T)Ps], RNRs provide all organisms with the required precursors for the de novo synthesis and repair of DNA. RNRs accomplish this chemically challenging feat with great fidelity by harnessing free-radical chemistry. To date, all RNRs characterized utilize an unstable cysteine thiyl radical (C·), formed in close proximity to the bound ND(T)P to initiate ribonucleotide reduction. Class I RNRs, which all of our studies are focused on and encompass the enzymes from all mammals, aerobically-growing Escherichia coli (Ec), and the human pathogen Chlamydia trachomatis (Ct), are comprised of two non-identical protein subunits, termed alpha and beta. The alpha subunit contains the oxidizable C residue and the site of nucleotide reduction, whereas the beta subunit assembles a metallocofactor cofactor, ∼ 35 A away from the site of catalysis in alpha. To reduce ribonucleotides, all RNRs must transfer an oxidizing equivalent or 'hole', stored at the metallocofactor in beta, to alpha and generate the C· in a reversible process. The identity of metallocofactor is key distinguishing factor between the subclasses of class I RNRs, with the Ia and Ib enzymes utilizing diiron- and dimanganese-tyrosyl radical cofactors, and Ic employing a MnIV/FeIII cofactor.;The second part of this thesis focuses on the development of a method with utility that extends beyond our studies on Ct RNR. The capture (by rapid-mixing kinetic techniques) and characterization (by spectroscopy) of fleeting, reactive intermediates is the most-favored approach to mechanistic dissection of metalloenzymes. For metalloenzymes that also utilize molecular oxygen, O2, this approach is often hampered by the gas's modest aqueous solubility, which, at < 2 mM (at 1 atmosphere) limits both the effective rate constants for formation of reactive intermediates and the concentrations to which the intermediates can accumulate. Our work presented in Appendix C sought to overcome the challenge imposed by the poor solubility of O2 by using the enzyme chlorite dismutase (Cld), for the rapid, in situ generation of O2 at concentrations far exceeding 2 mM. Cld, a heme enzyme, efficiently converts chlorite (ClO 2-) to O2 and chloride ion (Cl-). The method a) permits accumulation of O2-derived complexes at concentrations well above 2 mM, b) allows greater precision in determining the O2- dependent kinetics of enzymes that bind or react with O2, and c) permits substantial increase in the yield of intermediates that form in a reversible, disfavored equilibrium with O2. This means of in situ O2 generation permits a > 5 mM "pulse" of O2 to be generated in < 1 ms at the easily accessible [Cld] of 50 muM. It should therefore significantly extend the range of kinetic and spectroscopic experiments that can routinely be undertaken in the study of these enzymes and could also facilitate resolution of mechanistic pathways in cases of either sluggish or thermodynamically unfavorable O2- addition steps. (Abstract shortened by UMI.).
机译:酶是自然界的首选催化剂,通常会对其底物进行显着转化,而对这些催化剂的机理研究大大促进了我们对生物过程的理解。我们的工作重点是在有氧环境中使用一种或多种过渡金属作为辅助因子以促进其底物转化的酶的详细表征。促进这些酶促反应的机理阐明的选择方法涉及捕获沿每个反应序列发生的瞬时物种(反应性中间体),以及每个捕获物种的动力学和光谱表征。本论文的主要重点涉及对经典的利用O2的金属酶核糖核苷酸还原酶(RNR)的机理研究;通过催化核糖核苷酸向脱氧核糖核苷酸[ND(T)Ps]的转化,RNR为所有生物提供了所需的前体。从头合成和修复DNA。 RNR通过利用自由基化学,以高保真度完成了这一具有化学挑战性的壮举。迄今为止,所有表征为RNR的RNR都利用不稳定的半胱氨酸巯基(C·),其紧密结合于结合的ND(T)P以启动核糖核苷酸还原。 I类RNR,我们所有的研究都集中于并涵盖了来自所有哺乳动物,需氧生长的大肠杆菌(Ec)和人类病原体沙眼衣原体(Ct)的酶,它们由两个不同的蛋白质亚基组成,称为alpha和beta。 α亚基包含可氧化的C残基和核苷酸还原位点,而β亚基组装了金属因子辅因子,距α催化位点约35A。为了减少核糖核苷酸,所有RNR必须将存储在金属因子中的氧化当量或“空穴”转移到α中,并以可逆过程生成C·。金属因子的身份是I类RNRs亚类之间的关键区别因子,Ia和Ib酶利用二铁和二锰-酪氨酰自由基辅助因子,Ic利用MnIV / FeIII辅助因子。实用方法的开发超出了我们对Ct RNR的研究范围。短暂的,反应性中间体的捕获(通过快速混合动力学技术)和表征(通过光谱学)是金属酶机械分解的最优选方法。对于也利用分子氧O2的金属酶,该方法通常会受到气体适度的水溶解度的阻碍,该溶解度在<2 mM(在1个大气压下)会限制形成反应性中间体的有效速率常数以及中间体会积累。附录C中介绍的我们的工作力求通过使用亚氯酸盐歧化酶(Cld)克服O2溶解度差的挑战,以快速原位产生浓度远超过2 mM的O2。 Cld是一种血红素酶,可有效地将亚氯酸盐(ClO 2-)转化为O2和氯离子(Cl-)。方法a)允许O2衍生的复合物以远高于2 mM的浓度积累,b)允许更精确地确定与O2结合或反应的酶的O2依赖动力学,以及c)允许中间体产量大幅增加与氧气形成可逆的不利平衡。这种原位产生O2的方式允许在不到1 ms的时间内以50μM的容易获得的[Cld]产生> 5 mM的“脉冲”。因此,它应该大大扩展在这些酶的研究中可以常规进行的动力学和光谱学实验的范围,并且还可以在缓慢或热力学不利的O2加成步骤的情况下促进机理途径的解析。 (摘要由UMI缩短。)。

著录项

  • 作者

    Dassama, Laura M. K.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Biochemistry.;Cellular biology.;Molecular biology.;Oncology.;Inorganic chemistry.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 239 p.
  • 总页数 239
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号