首页> 外文学位 >Directed assembly and manipulation of anisotropic colloidal particles by external fields.
【24h】

Directed assembly and manipulation of anisotropic colloidal particles by external fields.

机译:通过外部场定向组装和操纵各向异性胶体颗粒。

获取原文
获取原文并翻译 | 示例

摘要

The application of external fields to anisotropic particles can be an efficient means of programmed assembly of novel materials and is a rapidly expanding research field. We report a series of studies on the assembly and manipulation of surface patterned anisotropic colloidal particles (whose surfaces are physically or chemically different) by external alternating current (AC) electric and magnetic fields. The fundamental results include the first experimental observation of induced-charge electrophoretic (ICEP) motion of asymmetric metallodielectric microspheres and the formation of novel assembled structures of these particles by dielectrophoresis (particle interaction with external AC electric field gradients) and by magnetophoresis (migration and interaction of particles in an inhomogeneous magnetic field). The experimental and modeling techniques developed and fundamental principles uncovered could be used to engineer the processes of directed and/or programmed assembly of other types of anisotropic particles.Janus particles were prepared by coating dielectric, polystyrene latex microspheres with a conductive metal layer on one hemisphere. The phase space for AC electric field intensity and frequency was explored for these particles on a glass surface between two electrodes. A rich variety of metallodielectric structures and dynamics were uncovered, which are very different from those obtained from directed dielectrophoretic assembly of plain dielectric or plain conductive particles. The application of low frequency AC fields to aqueous suspensions of the Janus particles leads to unbalanced liquid flows around each half of the particle causing nonlinear, ICEP particle motion (perpendicular to the field direction). Above 10 kHz field frequency, the metallodielectric particles assemble into new types of chain structures, where the metallized halves of neighboring particles align into lanes along the field direction. These staggered chains were confined together to form two-dimensional metallodielectric crystals. The experimental results of the orientation of Janus particles in the electric field and the formation of staggered chains were interpreted by means of numerical simulations of the electric energy of the system. The assembly of Janus metallodielectric particles may find applications in liquid-borne microcircuits and materials with directional electric and heat transfer. The electrokinetic motion of the particles may find applications in microactuators and microfluidic devices.The assembly of magnetic Janus colloids (having 50% surface coating of iron on polystyrene microspheres) under the combined (and sometimes competing) dielectrophoretic and magnetophoretic forces was investigated. The structures formed by magnetic fields have the advantage that the particle interactions are bistable. They can result in permanent structures, which could be disassembled on demand by remote demagnetization and then reassembled into new stable structures, thus recycling the building blocks. The assembly of magnetic anisotropic particles may find numerous potential applications, among which are bifunctional drug delivery agents and novel flexible displays.We found that even more unusual types of new structures are formed when high frequency (> 50 kHz) AC electric fields are applied to suspensions of "patchy" particles. The microspheres, produced by glancing angle metal deposition, have either a single patch that is less than 50% of the total latex particle surface or two metallic patches on each pole of the particle. These patchy particles assemble in electric fields by interacting with each other in two or more directions, pre-programmed by the patch size and orientation. The multi-directional chains were confined together to form a percolated network of particles and lattices of unusual symmetry. Simulation results indicate that the assembly pattern of these particles into multi-directional chains is guided by quadrupolar and multipolar interactions, which allow for the future development of new strategies for highly controlled "programmed" assembly by external fields.
机译:将外部场应用于各向异性粒子可以是新型材料的程序化组装的有效手段,并且是一个迅速扩展的研究领域。我们报告了一系列有关通过外部交流电(AC)电场和磁场对表面图案化各向异性胶体颗粒(其表面在物理或化学上不同)进行组装和处理的研究。基本结果包括首次实验观察非对称金属介电微球的感应电荷电泳(ICEP)运动,以及通过介电电泳(粒子与外部AC电场梯度相互作用)和磁泳(迁移和相互作用)形成这些粒子的新型组装结构不均匀磁场中的粒子数)。开发的实验和建模技术以及揭示的基本原理可用于设计其他类型的各向异性粒子的定向和/或程序化组装过程。通过在一个半球上涂覆导电金属层的介电聚苯乙烯胶乳微球来制备剑齿。在两个电极之间的玻璃表面上探索了这些粒子的交流电场强度和频率的相空间。揭示了多种金属电介质的结构和动力学,这与从普通电介质或普通导电粒子的定向介电电泳组装获得的结构和动力学有很大不同。将低频AC场应用于Janus颗粒的水悬浮液会导致围绕颗粒每半部分的不平衡液体流动,从而导致非线性ICEP颗粒运动(垂直于电场方向)。高于10 kHz的场频,金属电介质粒子会组装成新型的链结构,其中相邻粒子的金属化半部会沿磁场方向排列成通道。这些交错的链被限制在一起以形成二维的金属介电晶体。通过对系统电能的数值模拟,解释了Janus粒子在电场中的取向和交错链的形成的实验结果。贾纳斯金属电介质颗粒的组装可用于具有定向电和热传递的液体微电路和材料。颗粒的电动运动可能在微致动器和微流体装置中得到应用。研究了在组合的(有时是相互竞争的)介电泳和磁致动力作用下的磁性Janus胶体(在聚苯乙烯微球上具有50%的铁表面涂层)的组装。由磁场形成的结构具有粒子相互作用是双稳态的优点。它们会产生永久性结构,可以根据需要通过远程消磁将其拆解,然后重新组装成新的稳定结构,从而回收建筑构件。磁性各向异性粒子的组装可能会发现许多潜在的应用,其中包括双功能药物递送剂和新型柔性显示器。我们发现,当高频(> 50 kHz)交流电场应用于“斑点”颗粒的悬浮液。通过掠角金属沉积产生的微球具有小于胶乳颗粒总表面的50%的单个贴剂,或在颗粒的每个极上具有两个金属贴剂。这些斑块状的粒子通过在两个或多个方向上相互作用而在电场中聚集,这些方向由补丁的大小和方向预先编程。多方向链被限制在一起以形成具有异常对称性的颗粒和晶格的渗透网络。仿真结果表明,这些粒子成多方向链的组装模式受四极和多极相互作用的指导,这允许将来开发新策略以通过外部场高度控制“程序化”组装。

著录项

  • 作者

    Gangwal, Sumit.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Engineering Chemical.Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 164 p.
  • 总页数 164
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号