首页> 外文学位 >Optimum airspace design with air traffic controller workload-based partitioning.
【24h】

Optimum airspace design with air traffic controller workload-based partitioning.

机译:空中交通管制员基于工作负载的分区实现了最佳的空域设计。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation proposes an Air Traffic Controller (ATC) workload based methodology for optimum airspace partitioning. Initially, we define a set of airspace metrics for analytical modeling of the ATC cognitive workload and airspace complexity. We use a large-scale, fast-time simulation to model the current sectors in five Air Route Traffic Control Centers (ARTCCs) and compute the airspace metrics for each sector. These metrics are then used to calculate ATC workload and traffic complexity during various time intervals. Sectors are then ranked based on their traffic complexity and we show that the defined metrics are able to identify the complex sectors. Having a reasonable ATC workload modeling technique, we decompose the U.S. national airspace into three layers using altitude ranges based on operational levels of low, high, and ultra-high airspace. Each layer is further tiled into 2,566 hexagonal cells (hex-cells) with 24 nautical mile sides. These hex-cells are assumed to be finite elements of airspace and ATC workload is modeled for each hex-cell using various airspace metrics. We apply visualization techniques to analyze the spatial and temporal distribution of the controller workload and to identify congested periods of the U.S. National Airspace System (NAS).; Having the workload values for each hex-cell during the congested periods, we develop clustering algorithms using optimization theory to cluster hex-cells and partition the airspace to ARTCCs and sectors. We first partition the airspace to ARTCCs and define the optimum boundaries for different number of ARTCCs. Then the partitioning is continued within each ARTCC to construct optimum sector boundaries. This dissertation concentrates on simulation as a means to evaluate cognitive workload for the elements of airspace regardless of current sector and ARTCC boundaries. The only apriori inputs are the location of current ARTCC facilities and airports, the demand profiles for each city pair, and the filed routes. The proposed grid-based optimization methodology enables the inclusion of a wide range of objective functions and constraints.; This research should be of interest to both airspace design engineers and air transportation policy makers.
机译:本文提出了一种基于空中交通管制员(ATC)工作量的方法,用于最佳空域划分。最初,我们定义了一组空域指标,用于ATC认知工作量和空域复杂性的分析建模。我们使用大规模的快速仿真来对五个空中交通管制中心(ARTCC)中的当前部门进行建模,并计算每个部门的空域度量。然后,将这些指标用于计算各个时间间隔内的ATC工作量和流量复杂性。然后根据业务量的复杂程度对行业进行排名,我们证明所定义的指标能够识别复杂的行业。借助合理的ATC工作量建模技术,我们根据低空,高空和超高空域的运行水平,使用高度范围将美国国家空域分解为三层。每层进一步平铺成2566个六角形细胞(六角形细胞),每边有24海里。假定这些六边形单元是空域的有限元素,并且使用各种空域度量标准为每个十六进制单元建模了ATC工作量。我们应用可视化技术来分析控制器工作负荷的时空分布,并确定美国国家空域系统(NAS)的拥挤时段。在拥塞期间,每个十六进制单元都有工作量值,我们使用优化理论开发聚类算法以对十六进制单元进行聚类,并将空域划分为ARTCC和扇区。我们首先将空域划分为ARTCC,并为不同数量的ARTCC定义最佳边界。然后,在每个ARTCC中继续进行分区,以构建最佳扇区边界。本文关注模拟作为一种评估空域要素认知工作量的方法,而不论当前部门和ARTCC边界如何。唯一的先验输入是当前ARTCC设施和机场的位置,每个城市对的需求概况以及归档的路线。所提出的基于网格的优化方法使得能够包含各种各样的目标函数和约束。空域设计工程师和航空运输决策者都应该对此研究感兴趣。

著录项

  • 作者

    Yousefi, Arash.;

  • 作者单位

    George Mason University.;

  • 授予单位 George Mason University.;
  • 学科 Operations Research.; Engineering Aerospace.; Engineering System Science.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 165 p.
  • 总页数 165
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 运筹学;航空、航天技术的研究与探索;系统科学;
  • 关键词

  • 入库时间 2022-08-17 11:41:25

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号