首页> 外文学位 >Concurrent design of FI-IPM machines for self-sensing and electromechanical power conversion.
【24h】

Concurrent design of FI-IPM machines for self-sensing and electromechanical power conversion.

机译:FI-IPM机器的并发设计,用于自感应和机电功率转换。

获取原文
获取原文并翻译 | 示例

摘要

This thesis presents concurrent design of flux-intensifying interior permanent magnet (FI-IPM) machines that are suitable for self-sensing and electromechanical power conversion. Self-sensing capabilities primarily focus on position sensing at very low speeds (using saliency-tracking based methods), while power conversion capabilities focus on loss reduction in applications with duty-cycle loads, such as in electric vehicles (EVs). Systematic metrics used for evaluating machine self-sensing and power conversion aspects are presented. Simulations with finite-element analysis (FEA) are mainly used to gain insight of magnetic behavior in different types of evaluated IPM designs.;Q-axis flux-barriers are used in the concurrent design of FI-IPM machines due to their effectiveness in reducing saturation effects caused by stator load current. A saliency characteristic with Ld > Lq is presented as the key design objective in the concurrent design methodologies. Self-sensing capability can be improved as machine parameters become less sensitive to loading and variations in the fundamental saliency magnitude and orientation are small. As for power conversion aspects, induced saturation is decreased which can lead to a reduction in iron losses. In addition, a wide range in a manipulation of flux linkage can be achieved from flux-intensifying operation.;Investigation is also extended to cover design of FI-IPM machines with variable flux characteristics. Effects of associated topological structures in a rotor, such as flux-barriers, rotor iron bridges and magnet configurations, are evaluated to understand design tradeoffs in power conversion and self-sensing. Limitations of the proposed concurrent design methodologies are also evaluated with practical design constraints found in EV applications. Design approaches for dealing with identified issues are presented accordingly.
机译:本文提出了适用于自感应和机电功率转换的磁通增强型内部永磁体(FI-IPM)电机的并行设计。自感应功能主要专注于极低速度的位置感应(使用基于显着性跟踪的方法),而功率转换功能则专注于在具有占空比负载的应用(例如,电动汽车(EV))中减少损耗。介绍了用于评估机器自感和功率转换方面的系统指标。使用有限元分析(FEA)进行的仿真主要用于了解不同类型的评估IPM设计中的磁行为。;由于FI-IPM机器在降低设计效率方面的有效性,因此在并发设计中使用了Q轴磁通势垒定子负载电流引起的饱和效应。 Ld> Lq的显着性特征被提出作为并行设计方法中的关键设计目标。随着机器参数对负载的敏感性降低以及基本显着性幅度和方向的变化较小,可以提高自感应能力。至于功率转换方面,感应饱和度降低,这可以减少铁损。此外,通过磁通强化操作,可以在磁链的操纵中实现广泛的范围。;研究也扩展到了具有可变磁通特性的FI-IPM机器的设计。评估了转子中相关拓扑结构的影响,例如磁通势垒,转子铁桥和磁体配置,以了解功率转换和自感测中的设计权衡。还通过在电动汽车应用中发现的实际设计约束条件来评估提出的并行设计方法的局限性。相应地介绍了用于解决已确定问题的设计方法。

著录项

  • 作者

    Limsuwan, Natee.;

  • 作者单位

    The University of Wisconsin - Madison.;

  • 授予单位 The University of Wisconsin - Madison.;
  • 学科 Electrical engineering.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 379 p.
  • 总页数 379
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号