首页> 外文学位 >Probing interfacial properties of polymeric and soluble surfactants -- New tools, new insights.
【24h】

Probing interfacial properties of polymeric and soluble surfactants -- New tools, new insights.

机译:探索聚合物和可溶性表面活性剂的界面特性-新工具,新见解。

获取原文
获取原文并翻译 | 示例

摘要

Surface-active materials such as amphiphilic molecules, copolymers, proteins, and particles are used throughout engineering and science to modify both equilibrium and dynamic properties of fluid-fluid interfaces in applications as varied as wettability modification, emulsification/foaming, and detergency. A significant challenge facing processing engineers in various industries is the ability to create, control or prevent the formation of foam. The rational incorporation of foaming/de-foaming surfactants into industrial formulations thus requires fundamental knowledge of the physico-chemical mechanisms responsible for properties and performance of the processes/products.;Over the past 60+ years, a general belief has developed that the surface shear viscosity of a given surfactant solution is correlated to the stability of the foam it produces. Published surface shear viscosity measurements for the heavily-studied foaming surfactant sodium dodecyl sulfate (SDS), however, show almost no agreement. Motivated by a critical re-evaluation, in this dissertation, we use a sensitive technique designed specifically to excite surface shear deformations alone, making the most sensitive and precise measurements to date of the surface shear viscosity of SDS solutions. Our measurements reveal the surface shear viscosity of SDS to be immeasurably low, and below the sensitivity limit of our technique, giving an upper bound on the order of ~10-8 N·s/m. Multiple control and complementary measurements support our conclusion, for SDS and a wide variety of high- and low-foaming soluble surfactants of polymeric, ionic, and non-ionic character. These results cast serious doubt on previous measurements of surface shear viscosity for soluble, small-molecule surfactants in general, and particularly on any foam stability/surface shear viscosity correlations based upon on them.;In the second part of the dissertation, we focus on the self-assembly of polymer-based surfactants and nanoparticles on a liquid substrate. These materials are central to many applications, including dispersion stabilization, creation of novel 2D materials and surface patterning. Very often these processes involve compressing interfacial monolayers of particles or polymers to obtain the desired material microstructure. At high surface pressures, however, even highly interfacially-active objects can desorb from the interface. Methods of measuring directly the energy which keeps the polymer or particles bound to the interface (adsorption/desorption energies) are therefore of high interest for these processes. We demonstrate a technique to quantify desorption energies directly, by comparing surface pressure-density compression measurements using a Wilhelmy plate and a custom-microfabricated deflection tensiometer. Focusing on poly(ethylene oxide)-based polymers and nanoparticles, we find that the adsorption energy of PEO homopolymer chains scales linearly with molecular weight, and can be tuned by changing the sub-phase composition. Moreover, the desorption surface pressure of PEO-stabilized nanoparticles corresponds to the saturation surface pressure for spontaneously-adsorbed monolayers, yielding trapping energies of ~ 103 kBT.
机译:两亲分子,共聚物,蛋白质和颗粒之类的表面活性材料在整个工程和科学过程中都用于改变流体-流体界面的平衡和动态特性,如润湿性改性,乳化/发泡和去污力等。各行各业的加工工程师面临的重大挑战是产生,控制或防止泡沫形成的能力。因此,要将发泡/消泡表面活性剂合理地掺入工业配方中,需要对负责该过程/产品的性能和性能的物理化学机制有基本的了解。在过去的60多年中,人们普遍认为表面给定的表面活性剂溶液的剪切粘度与其产生的泡沫的稳定性相关。但是,已发表的有关研究广泛的发泡表面活性剂十二烷基硫酸钠(SDS)的表面剪切粘度测量结果几乎没有一致。在本文中,通过严格的重新评估,我们采用了一种专门设计用于仅激发表面剪切变形的敏感技术,从而对SDS溶液的表面剪切粘度进行了最敏感,最精确的测量。我们的测量结果表明,SDS的表面剪切粘度非常低,并且低于我们技术的灵敏度极限,给出的上限约为10-8 N·s / m。对于SDS以及具有聚合物,离子和非离子特性的各种高泡和低泡可溶性表面活性剂,多种控制和互补性测量支持我们的结论。这些结果使人们对以前对可溶性小分子表面活性剂的表面剪切粘度的测量产生了严重的怀疑,特别是基于它们的任何泡沫稳定性/表面剪切粘度的相关性。;在论文的第二部分,我们着重于聚合物基表面活性剂和纳米颗粒在液体基质上的自组装。这些材料对于许多应用都是至关重要的,包括分散稳定性,新型2D材料的创建和表面图案化。通常,这些过程涉及压缩颗粒或聚合物的界面单层以获得所需的材料微结构。但是,在高表面压力下,即使界面活性高的物体也可能从界面上解吸。因此,对于这些方法,直接测量使聚合物或颗粒保持结合在界面上的能量的方法(吸附/解吸能量)非常重要。我们通过比较使用Wilhelmy板和定制的微型挠曲张力计的表面压力密度压缩测量值,展示了直接量化解吸能量的技术。着眼于基于聚环氧乙烷的聚合物和纳米颗粒,我们发现PEO均聚物链的吸附能随分子量呈线性比例变化,并且可以通过改变亚相组成来调节。此外,PEO稳定的纳米颗粒的解吸表面压力对应于自发吸附单层的饱和表面压力,从而产生约103 kBT的俘获能。

著录项

  • 作者

    Zell, Zachary Adam.;

  • 作者单位

    University of California, Santa Barbara.;

  • 授予单位 University of California, Santa Barbara.;
  • 学科 Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 150 p.
  • 总页数 150
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号