首页> 外文学位 >Modeling, analysis and control of voltage-source converter in microgrids and hvdc.
【24h】

Modeling, analysis and control of voltage-source converter in microgrids and hvdc.

机译:微电网和高压直流输电中电压源转换器的建模,分析和控制。

获取原文
获取原文并翻译 | 示例

摘要

The objective of this dissertation is to carry out dynamic modeling, analysis and control for Voltage-Source Converters (VSC). Two major applications of VSC will be investigated in this dissertation: microgrid application and High Voltage Direct Current (HVDC) application. In microgrid applications, VSC is used to integrate distributed energy sources such as battery and provide system functions: such as real and reactive power regulation, voltage and frequency support during islanding condition, and abnormal system condition mitigation. In HVDC applications, VSC is used to interconnect dc systems with ac systems. The functions supplied by VSC are similar to that in microgrids. However, the transfer capability and stability in such kind of system are of major interests. Therefore, Part I of this dissertation focuses on VSC's applications in microgrids. A battery's inverter can be operated in both grid-connected PQ regulation mode and voltage and frequency support mode during islanding condition. Transition scheme between these two control modes is firstly investigated to guarantee a smooth dynamic performance. Secondly, a coordinated control strategy between battery's and PV station's VSCs is developed to improve microgrid's power flow. Thirdly, power quality improvement through the battery's inverter is investigated. VSC's control and capability for microgrid operation at normal, transient, and abnormal conditions will be modeled and analyzed. Part II of this dissertation focuses on VSC's applications in HVDC. The following topics are investigated in this dissertation: (i) how to design VSC-HVDC's controller using system identification method? (ii) How to coordinate VSCs in multi-terminal HVDC scenarios? And (iii) how to determine VSC-HVDC system's transfer capability based on stability limits? High-fidelity simulation technology is employed to tackle control validation while frequency domain impedance modeling technique is employed to develop analytical models for the systems. With linear system analysis tools such as Nyquist plots and Bode plots, stability limits and impacting factors of VSC-HVDC systems can be identified. This dissertation led to four journal papers (two accepted, one request of revision, one to submit) and five conference papers. The major contributions of this dissertation include: 1) Developed VSC and microgrid models in high-fidelity simulation environment. Developed and validated VSC control schemes for variety of microgrid operations: normal, abnormal, and transient. The developed technologies can facilitate a battery to make up solar power, improve system dynamic performance during transients, and improve power quality. 2) Developed VSC-HVDC simulation models, including two-terminal HVDC and multi-terminal HVDC. Developed VSC-HVDC control schemes for two-terminal and multi-terminal systems. Developed analytical impedance models for VSC-HVDC systems and successfully carried out stability limit identification.
机译:本文的目的是对电压源转换器(VSC)进行动态建模,分析和控制。本文将研究VSC的两个主要应用:微电网应用和高压直流(HVDC)应用。在微电网应用中,VSC用于集成分布式能源(例如电池)并提供系统功能:例如有功和无功功率调节,孤岛状态下的电压和频率支持以及异常系统状态缓解。在HVDC应用中,VSC用于将直流系统与交流系统互连。 VSC提供的功能类似于微电网中的功能。然而,这种系统的传输能力和稳定性是主要利益。因此,本文的第一部分着重于VSC在微电网中的应用。在孤岛状态下,电池的逆变器可以在并网PQ调节模式和电压和频率支持模式下运行。首先研究了这两种控制模式之间的过渡方案,以确保平稳的动态性能。其次,开发了电池和光伏电站的VSC之间的协调控制策略,以改善微电网的功率流。第三,研究了通过电池逆变器改善电能质量。将对VSC在正常,瞬态和异常情况下微电网运行的控制和能力进行建模和分析。本文的第二部分着重于VSC在高压直流输电中的应用。本文对以下主题进行了研究:(i)如何使用系统识别方法设计VSC-HVDC控制器? (ii)在多终端HVDC方案中如何协调VSC?以及(iii)如何根据稳定性极限确定VSC-HVDC系统的传输能力?高保真仿真技术用于解决控制验证问题,而频域阻抗建模技术则用于开发系统的分析模型。利用线性系统分析工具(例如Nyquist图和Bode图),可以确定VSC-HVDC系统的稳定性极限和影响因素。这篇论文导致了四篇期刊论文(两篇被接受,一份修订请求,一份提交)和五篇会议论文。本文的主要贡献包括:1)在高保真仿真环境下开发了VSC和微网格模型。针对各种微电网操作(正常,异常和瞬态)开发并验证了VSC控制方案。先进的技术可以促进电池组成太阳能,提高瞬态过程中的系统动态性能,并提高电能质量。 2)开发了VSC-HVDC仿真模型,包括两端HVDC和多端HVDC。为两端子和多端子系统开发了VSC-HVDC控制方案。为VSC-HVDC系统开发了分析阻抗模型,并成功进行了稳定性极限识别。

著录项

  • 作者

    Xu, Ling.;

  • 作者单位

    University of South Florida.;

  • 授予单位 University of South Florida.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 171 p.
  • 总页数 171
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号