首页> 外文学位 >Tunneling in low-power device-design: A bottom-up view of issues, challenges, and opportunities.
【24h】

Tunneling in low-power device-design: A bottom-up view of issues, challenges, and opportunities.

机译:低功耗设备设计中的隧道:问题,挑战和机遇的自底向上视图。

获取原文
获取原文并翻译 | 示例

摘要

Simulation of electronic transport in nanoscale devices plays a pivotal role in shedding light on underlying physics, and in guiding device-design and optimization. The length scale of the problem and the physical mechanism of device operation guide the choice of formalism. In the sub-20 nanometer regime, semi-classical approaches start breaking down, thus necessitating a quantum-mechanical treatment of the electronic transport problem. Non-equilibrium Green's function (NEGF) is a theoretical framework for investigating quantum-mechanical systems---interacting with surroundings through exchange of quasiparticles---far from equilibrium. Although hugely computation-intensive with a realistic device-representation, it provides a rigorous way to include particle-particle interactions and to model phenomena that are inherently quantum-mechanical.;We build the Berkeley Quantum Transport Simulator (BQTS)---a massively parallel, generic, NEGF-based numerical simulator---to explore low-power device-design opportunities. Demonstrating scalability and benchmarking results with experimental tunnel diode data, we set out to understand tunneling in devices and to leverage it for both digital and analog applications.;Investigating InAs short-channel band-to-band tunneling transistors (TFETs), we show that direct source-to-drain tunneling sets the leakage-floor in such devices, thereby limiting the minimum subthreshold swing (SS) in spite of excellent electrostatics. A heterojunction TFET with a halo doping in the source-channel overlap region is proposed and is shown to achieve steep SS as well as large ON current. We discover that by band-offset engineering, the steepness therein could be controlled primarily by the modulation of heterojunction-barrier. Subsequently, exploring layered materials for analog applications, we demonstrate that doping the drain underlap region in graphene FETs prolongs the onset of tunneling in their output characteristics, and hence significantly increases their output resistance (r0) and intrinsic gain (gmr0). Due to large bandgap, and consequently, large r0, monolayer-MoS 2 FETs exhibit a significant enhancement in maximum oscillation frequency (fmax) over their graphene counterparts.
机译:纳米级设备中电子传输的仿真在阐明基础物理原理以及指导设备设计和优化方面起着关键作用。问题的规模和设备操作的物理机制指导形式主义的选择。在低于20纳米的状态下,半经典方法开始崩溃,因此必须对电子传输问题进行量子力学处理。非平衡格林函数(NEGF)是研究量子力学系统的理论框架-通过交换准粒子与周围环境相互作用-远非平衡。尽管使用逼真的设备表示法计算量很大,但它提供了一种严格的方法来包括粒子与粒子的相互作用以及对本质上是量子力学的现象进行建模。;我们构建了伯克利量子传输模拟器(BQTS)-并行的,基于NEGF的通用数字模拟器-探索低功耗设备设计的机会。为了展示实验性隧道二极管数据的可扩展性和基准测试结果,我们着手了解器件中的隧道效应,并将其用于数字和模拟应用。研究InAs短通道带到隧道晶体管(TFET),我们发现直接的源极到漏极隧穿设置了此类器件的漏电接地层,尽管具有出色的静电性能,但仍限制了最小亚阈值摆幅(SS)。提出了一种异质结TFET,其在源极-沟道重叠区中带有晕圈掺杂,并显示出可实现陡峭的SS以及大的导通电流。我们发现通过带偏工程,其中的陡度可以主要通过异质结势垒的调制来控制。随后,我们探索了用于模拟应用的分层材料,我们证明了在石墨烯FET中对漏极下重叠区进行掺杂会延长其输出特性中隧穿的开始时间,从而显着提高其输出电阻(r0)和固有增益(gmr0)。由于带隙较大,因此r0较大,因此单层MoS 2 FET的最大振荡频率(fmax)明显高于其石墨烯。

著录项

  • 作者

    Ganapathi, Kartik.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Electrical engineering.;Quantum physics.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 106 p.
  • 总页数 106
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:41:27

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号