首页> 外文学位 >Glass stability and nanocrystal formation in aluminum-based systems.
【24h】

Glass stability and nanocrystal formation in aluminum-based systems.

机译:铝基体系中的玻璃稳定性和纳米晶体形成。

获取原文
获取原文并翻译 | 示例

摘要

A growing number of new metallic alloy classes have been discovered that can be synthesized as amorphous phases either during rapid melt quenching or by slow cooling of bulk volumes. Aluminum based glasses exhibit high mechanical strength combined with a low density and two aspects of their stability are explored within the current work: 1.) The role of non-dense random packing atomic arrangements on the nanocrystallization kinetics from the glassy state and 2.) The relationship between the glassy arrangements and the energy landscape, in terms of both phase selection and glass formation. The interpretation of these two aspects of glass stability are advanced by experimental evidence from two main system types: Al-Y-Fe and Al-Fe-Si alloys.;These systems give access to relatively unexplored atomic arrangements, and the differences in their formation/phase selection make them ideal candidates to study their behavior. The Al-RE-TM alloys are mainly viewed in terms of their stability relative to crystallization of Al nanoparticles in order to ascertain information on structural heterogeneity within the as spun structure. In many Al rich metallic glasses, including Al-RE-TM systems, crystallization reactions are effective in yielding nanoscale microstructures with crystal densities up to 1022 m-3 or higher. The crystallization kinetics determinations support a transient heterogeneous nucleation mode. Al-Fe-Si alloys, on the other hand, are considered during the transition from glass to liquid in order to gain insight into the energetics of a new aluminum based amorphous phase called q-glass. From both microstructural characterization and rapid heating experiments, evidence suggests that the metastable q-glass phase melts to a liquid by a first order reaction. Data from the rapid heating experiments constitute the first observations of first order melting of a metallic glassy phase.;In order to understand the crystallization kinetics of a system or to discover new systems for future applications, an understanding of the structure-stability relationship is necessary. The glassy phase stability and thermodynamic conditions discovered in the Al-Fe-Si system provide new insight into the novel route to amorphization. These new developments offer exciting possibilities for control of nanoscale microstructures and also challenge the current fundamental understanding of the reaction mechanisms.
机译:已经发现了越来越多的新型金属合金,它们可以在快速熔体淬火过程中或通过缓慢冷却体积而合成为非晶相。铝基玻璃具有较高的机械强度和较低的密度,目前的工作探讨了其稳定性的两个方面:1.)非致密无规堆积原子排列对玻璃态纳米结晶动力学的作用; 2。)在相选择和玻璃形成方面,玻璃排列与能量分布之间的关系。通过以下两种主要系统类型的实验证据对玻璃稳定性的这两个方面进行了解释:Al-Y-Fe和Al-Fe-Si合金;这些系统提供了相对未曾探索过的原子排列及其形成差异的途径/阶段选择使其成为研究其行为的理想人选。主要从Al-RE-TM合金相对于Al纳米颗粒结晶的稳定性的角度来看待,以便确定纺丝结构内结构异质性的信息。在包括Al-RE-TM系统在内的许多富含Al的金属玻璃中,结晶反应可有效产生晶体密度高达1022 m-3或更高的纳米级微结构。结晶动力学测定支持瞬时异质成核模式。另一方面,在从玻璃到液体的过渡过程中考虑使用Al-Fe-Si合金,以了解新的称为q玻璃的铝基非晶相的能量。从微观结构表征和快速加热实验来看,证据表明亚稳态q-玻璃相通过一级反应熔化成液体。快速加热实验的数据构成了金属玻璃相一阶熔融的第一个观察结果;为了了解系统的结晶动力学或发现新的系统以供将来应用,必须了解结构稳定性关系。在Al-Fe-Si系统中发现的玻璃相稳定性和热力学条件为新的非晶化途径提供了新的见识。这些新的发展为控制纳米级微结构提供了令人兴奋的可能性,并且也挑战了当前对反应机理的基本理解。

著录项

  • 作者

    Imhoff, Seth David.;

  • 作者单位

    The University of Wisconsin - Madison.;

  • 授予单位 The University of Wisconsin - Madison.;
  • 学科 Engineering Metallurgy.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 242 p.
  • 总页数 242
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号