首页> 外文学位 >Controlled Release Systems Using Functional Nanofibers for Wound Healing and Tissue Engineering Applications.
【24h】

Controlled Release Systems Using Functional Nanofibers for Wound Healing and Tissue Engineering Applications.

机译:使用功能性纳米纤维的控释系统,用于伤口愈合和组织工程应用。

获取原文
获取原文并翻译 | 示例

摘要

Controlled release systems are of great importance for the healthcare field, with specific emphasis on drug or compound delivery for wound healing and tissue engineering applications. Nonwoven structures are already used extensively in healthcare due to their large surface area, absorbent properties, facile processing scheme, and relative cost-effectiveness. The ability to create functional nonwoven structures with well-controlled morphologies and release properties can now be achieved on the nanoscale utilizing the electrospinning method. Electrospinning utilizes the interplay between electrical forces and surface tension to create fibers with submicron diameters, collected in random mats with high porosity, by applying a strong electric field between a charged drop of polymer solution and a collection plate. These nanofibrous mats provide a compliant mesh that not only resembles the natural extracellular matrix in vivo, but also provides a material with an extremely large surface area to volume ratio for maximizing the interaction of the carrier with a surrounding medium.;The purpose of this work was to develop functional nanofibers using electrospinning system and control the release rate of a variety of compounds from such structures as desired for multiple clinical applications. In all of our experiments polylactic acid (PLA) was used as the polymeric matrix and it was loaded with different compounds such as tricalcium phosphate (TCP) nanoparticles, as an osteoconductive compound for bone tissue engineering, silver nano particles, highly porous silver microparticles, and a silver nitrate base polymeric solution as antibacterial, antimicrobial compound for wound healing application, and ibuprofen as an anti-inflammatory drug for wound healing applications. Fiber morphology, drug concentration and release medium temperature were the main parameters that we manipulated to control the release rate of drugs from nanofibrous structures. For all the drug loaded nanofibrous structures, we determined the release profile and the in vitro cytotoxicity using human skin cells. For some of the drug/nanofiber composite structures we further pursued our experiments and evaluated their toxicity and functionality in vivo .;Our finding confirmed that fiber morphology can change the release profile of drug from nanofibers and subsequently influence the activities of cells seeded on them. TCP nanoparticles encapsulated in porous fibers exhibited the highest release rate as compared to single component and core-sheath nanofibers. The differentiation of human adiposed drive stem cells (hASC) seeded on nanofibers was also influenced by fiber morphology and the highest differentiation observed for the cells seeded on porous fibers. Drug concentration also played an important role in determining the cytotoxicity of nanofibers coated with silver nitrate containing solution. Our results showed that higher silver content in nanofibers results in higher release rate as well as higher chances of cytotoxicity towards human skin cells. Same results observed when quantifying the release of ibuprofen from PLA nanofibers. Lastly, our preliminary in vivo analysis using nude mice model for ibuprofen loaded nanofibers and pig model for silver containing nanofibers showed the potential of our developed functional nanofibers to be used in clinical applications.
机译:控释系统对于医疗保健领域非常重要,特别强调用于伤口愈合和组织工程应用的药物或化合物的输送。非织造结构由于其大的表面积,吸收性,容易的加工方案和相对的成本效益而已广泛用于医疗保健中。现在可以利用电纺丝方法在纳米级上获得具有良好控制的形态和释放性能的功能性非织造结构的能力。通过在聚合物溶液的带电液滴和收集板之间施加强电场,静电纺丝利用电场力和表面张力之间的相互作用来产生具有亚微米直径的纤维,这些纤维被收集在具有高孔隙率的无序毡中。这些纳米纤维垫提供了一个顺应性的网状物,不仅类似于体内的天然细胞外基质,而且还提供了一种具有极大的表面积与体积之比的材料,以使载体与周围介质的相互作用最大化。我们使用静电纺丝系统开发功能性纳米纤维,并根据多种临床应用的需要控制各种化合物从此类结构中的释放速率。在我们所有的实验中,都将聚乳酸(PLA)用作聚合物基质,并在其中负载了各种化合物,例如磷酸三钙(TCP)纳米颗粒,用于骨组织工程的骨传导化合物,银纳米颗粒,高孔隙度银微粒,硝酸银基聚合物溶液用作伤口愈合应用的抗菌,抗菌化合物,布洛芬用作伤口愈合应用的抗炎药。纤维形态,药物浓度和释放介质温度是我们用来控制药物从纳米纤维结构释放速率的主要参数。对于所有载有药物的纳米纤维结构,我们使用人皮肤细胞确定了释放曲线和体外细胞毒性。对于某些药物/纳米纤维复合结构,我们进一步进行了实验,并评估了它们在体内的毒性和功能性。我们的发现证实,纤维形态可以改变药物从纳米纤维的释放曲线,进而影响接种在其上的细胞的活性。与单组分和芯鞘纳米纤维相比,包裹在多孔纤维中的TCP纳米颗粒具有最高的释放速率。接种在纳米纤维上的人类脂肪驱动干细胞(hASC)的分化也受到纤维形态的影响,并且观察到接种在多孔纤维上的细胞的最高分化。药物浓度在确定涂有硝酸银溶液的纳米纤维的细胞毒性中也起着重要作用。我们的结果表明,纳米纤维中较高的银含量会导致较高的释放速率以及对人皮肤细胞的细胞毒性机会。当定量布洛芬从PLA纳米纤维中的释放时,观察到相同的结果。最后,我们使用布洛芬负载纳米纤维的裸鼠模型和含银纳米纤维的猪模型进行了初步的体内分析,表明我们开发的功能性纳米纤维在临床应用中具有潜力。

著录项

  • 作者

    Mohiti-Asli, Mahsa.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Textile Technology.;Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 161 p.
  • 总页数 161
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号