首页> 外文学位 >Biological control of manganese in water supplies in the presence of humic acids.
【24h】

Biological control of manganese in water supplies in the presence of humic acids.

机译:腐殖酸存在下供水中锰的生物控制。

获取原文
获取原文并翻译 | 示例

摘要

The main objective of this study was to improve our understanding of biological filtration (biofilm type) treatment for manganese (Mn) removal in drinking water. Biological filtration treatment involves biofilms of Mn(II)-oxidizing microorganisms attached to solid filter material that remove and immobilize dissolved Mn(II) in raw water by conversion to black MnO2(s) precipitates. Mn-biological filtration is an emerging green technology that can serve as an alternative to conventional physicochemical treatments, but its full potential is hindered by various factors. These include lack of understanding the (1) optimal removal conditions for Mn, (2) mechanisms for biofilter Mn releases, and (3) effects of recalcitrant natural organic matter (NOM) on biofiltration. Confounding these issues is the unknown identity of the diverse microbial communities which occupy the biofilms attached to the filter media.;To investigate these issues, biological Mn removal was studied in laboratory bench scale reactors using a new Mn(II)-oxidizing bacterium isolate, Pseudomonas Putida EC112. The main research hypothesis formulated that the transition metal catalyst, MnO2(s), can increase the bioavailable carbon and energy from recalcitrant NOM (e.g., humic acids (HA)) in biological filters. Mn and HA can be found in most natural waters, including groundwaters, lakes and streams. To test the hypothesis, the potential for strain EC112 growth and Mn(II) oxidation utilizing the organic substrate products from the oxidation reaction between HA and MnO2(s) was assessed.;Biological Mn(II)-oxidation kinetics were investigated in batch (suspended cell) and continuous flow (biofilm) bioreactors at optimal pH and temperature conditions for strain EC112. Batch kinetics was successfully characterized with the Monod model. Continuous flow steady-state kinetics was modeled with a single, first-order kinetic parameter.;Enhanced Mn(II) removal capacity was observed for strain EC112 in batch and continuous flow reactors in the presence of HA and MnO2(s). The effect of MnO2(s) on HA biodegradability was studied and optimal conditions for biodegradation were identified.;Biofilter Mn(II) releases were observed during the continuous flow bioreactor experiments. Release conditions were identified and releases modeled using pseudo first-order kinetics.;Changes in HA structure induced by MnO2(s) oxidation were studied with Fourier transform infrared (FT-IR) and proton nuclear magnetic spectroscopy (1H-NMR).;KETWORDS: Biological filtration, drinking water, humic acids, manganese, Pseudomonas Putida..
机译:这项研究的主要目的是增进我们对饮用水中锰(Mn)去除的生物过滤(生物膜类型)处理的理解。生物过滤处理涉及附着在固体过滤材料上的Mn(II)氧化微生物的生物膜,该膜通过转化为黑色MnO2沉淀物来去除和固定原水中溶解的Mn(II)。锰生物过滤是一种新兴的绿色技术,可以替代传统的物理化学处理方法,但其各种技术的潜力受到阻碍。这些包括缺乏对以下方面的了解:(1)锰的最佳去除条件;(2)生物滤池中锰释放的机理;(3)顽固的天然有机物(NOM)对生物滤池的影响。混淆这些问题的是未知微生物多样性的未知身份,这些微生物占据了附着在过滤介质上的生物膜。为了研究这些问题,在实验室台式规模的反应器中使用一种新的Mn(II)-氧化细菌分离物对生物Mn去除进行了研究,恶臭假单胞菌EC112。主要研究假设表明,过渡金属催化剂MnO2可以提高生物过滤器中难降解的NOM(例如腐殖酸(HA))的生物利用碳和能量。 Mn和HA可以在大多数天然水中发现,包括地下水,湖泊和溪流。为了验证该假设,利用HA和MnO2之间的氧化反应评估了有机底物产物对EC112菌株生长和Mn(II)氧化的潜力。;分批研究了生物Mn(II)-氧化动力学(悬浮液)和连续流动(生物膜)生物反应器在EC112菌株的最佳pH和温度条件下。用Monod模型成功地表征了间歇动力学。用单个一级动力学参数对连续流稳态动力学进行建模。在存在HA和MnO2的情况下,在分批和连续流反应器中观察到了EC112菌株对Mn(II)的去除能力增强。研究了MnO2对HA生物降解性的影响,确定了生物降解的最佳条件。在连续流动生物反应器实验中观察到了生物滤池中Mn(II)的释放。识别释放条件,并使用拟一级动力学模型模拟释放。;使用傅立叶变换红外光谱(FT-IR)和质子核磁谱(1H-NMR)研究了MnO2氧化诱导的HA结构变化。 :生物过滤,饮用水,腐殖酸,锰,假单胞菌

著录项

  • 作者

    Snyder, Michael.;

  • 作者单位

    University of Kentucky.;

  • 授予单位 University of Kentucky.;
  • 学科 Engineering Civil.;Engineering Environmental.;Engineering General.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 195 p.
  • 总页数 195
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号