首页> 外文学位 >Swept frequency eddy current (SFEC) measurements of Inconel 718 as a function of microstructure and residual stress.
【24h】

Swept frequency eddy current (SFEC) measurements of Inconel 718 as a function of microstructure and residual stress.

机译:Inconel 718的扫频涡流(SFEC)测量与微观结构和残余应力的关系。

获取原文
获取原文并翻译 | 示例

摘要

The goal of this thesis was to determine the dependency of swept frequency eddy current (SFEC) measurements on the microstructure of the Ni-based alloy, Inconel 718 as a function of heat treatment and shot peening. This involved extensive characterization of the sample using SEM and TEM coupled with measurements and analysis of the eddy current response of the various sample conditions using SFEC data. Specific objectives included determining the eddy current response at varying depths within the sample, and this was accomplished by taking SFEC measurements in frequencies ranging from 100 kHz to 50 MHz. Conductivity profile fitting of the resulting SFEC signals was obtained by considering influencing factors (such as surface damage). The problems associated with surface roughness and near surface damage produced by shot peening were overcome by using an inversion model. Differences in signal were seen as a result of precipitation produced by heat treatment and by residual stresses induced due to the shot peening. Hardness of the material, which is related both to precipitation and shot peening, was seen to correlate with the measured SFEC signal. Surface stress measurement was carried out using XRD giving stress in the near surface regions, but not included in the calculations due to shallow depth information provided by the technique compared to SFEC. By comparing theoretical SFEC signal computed using the microstructural values (precipitate fraction) and experimental SFEC data, dependency of the SFEC signals on microstructure and residual stress was obtained.
机译:本文的目的是确定扫频涡流(SFEC)测量对镍基合金Inconel 718的微观结构的依赖性,该函数是热处理和喷丸处理的函数。这涉及使用SEM和TEM对样品进行广泛的表征,以及使用SFEC数据对各种样品条件下的涡流响应进行测量和分析。具体目标包括确定样品内部不同深度处的涡流响应,这是通过在100 kHz至50 MHz频率范围内进行SFEC测量来实现的。通过考虑影响因素(例如表面损伤)获得了所得SFEC信号的电导率曲线拟合。通过使用反演模型克服了与喷丸处理所产生的表面粗糙度和近表面损伤相关的问题。信号差异是由于热处理产生的沉淀和喷丸引起的残余应力所致。与沉淀和喷丸硬化有关的材料硬度被认为与测得的SFEC信号相关。使用XRD进行表面应力测量,该表面应力在近表面区域提供,但由于与SFEC相比,该技术提供的浅层深度信息,因此未包括在计算中。通过比较使用微结构值(沉淀分数)和实验SFEC数据计算出的理论SFEC信号,可以获得SFEC信号对微结构和残余应力的依赖性。

著录项

  • 作者

    Chandrasekar, Ramya.;

  • 作者单位

    Iowa State University.;

  • 授予单位 Iowa State University.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 135 p.
  • 总页数 135
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号