首页> 外文学位 >Evaluating Habitat Vulnerability and Sustainability of Urban Seagrass Resources to Sea Level Rise.
【24h】

Evaluating Habitat Vulnerability and Sustainability of Urban Seagrass Resources to Sea Level Rise.

机译:评估人居脆弱性和城市海草资源对海平面上升的可持续性。

获取原文
获取原文并翻译 | 示例

摘要

The seagrass resource provides essential ecosystem functions for many marine species. This research evaluated the vulnerability and sustainability of the seagrass resource in an urbanized area to the effects of sea level rise. The assessment required analysis of information regarding the biogeography of the seagrass resource, and developing a method to model the spatial extent of the suitable habitat for seagrass, and applying the model to predict the implications of simulated sea level rise scenarios on the seagrass resource.;Examining the biogeography of the seagrass resource required the development of a seagrass monitoring and assessment field survey and a comprehensive seagrass resource map (SGRM). The mesoscale field survey was designed and conducted in St. Joseph Sound (STJS) and Clearwater Harbor North (CLWN), Pinellas County, Florida from 2006-2010 to determine the seagrass species composition and spatial distribution for the resource. The seagrass species found in the study area consisted of Syringodium filiforme Kutzing ( Syringodium), Thalassia testudinum Banks ex Konig (Thalassia), and Halodule wrightii Ascherson (Halodule). These seagrass species occurred in monospecific and mixed beds in all combinations throughout the study area. Spatially, Thalassia was the dominant nearshore in STJS and Halodule in CLWN. Syringodium was most frequently found in STJS in the mid to deep depths.;The SGRM was mapped from satellite remote sensing imagery with training information from the mesoscale field survey data. Landsat 5 Thematic Mapper (TM) and Earth Observing-1 Hyperion (HYP) were processed to map the seagrass resource in the study area in a nearshore shallow coastal area of Pinellas County, FL, USA. A maximum likelihood classification (MLC) was used to classify both TM and HYP imagery into three classes (seagrass estimated coverage) of the seagrass resource. The overall accuracy for the TM MLC map was 91% (kappa = 0.85) and the HYP was 95% (kappa = 0.92). Due to areas of cloud cover in the HYP image, it was necessary to composite the classification values from the TM MLC to accurately define these areas. The validation accuracy (n=72) of the composite seagrass resource map was 81% which was much more rigorous than the previous accuracy estimates. These results support the application of remote sensing methods to analyze the spatial extent of the seagrass resource.;The development of a spatial habitat suitability model (HSM) for the seagrass resource provided a management tool to better understand the relationship between seagrass, water quality, and other environmental factors. The motivation to develop the spatial HSM was to provide a spatial modeling tool to simulate changes in the water quality environment and evaluate the potential impact on the seagrass resource. High resolution bathymetry and field survey water quality data were used to fit general additive models (GAM) to the STJS (Adjusted R2= 0.72, n=134) and CLWN (Adjusted R2= 0.75, n=138) seagrass resource. The final GAMs included water quality variables including salinity, chlorophyll-a concentration, total suspended solids, turbidity, and light. The only significant variable was the light metric in STJS (p-value= 0.001) and CLWN (p-value= 0.006). The light metric was the logarithmic light attenuation calculated from the water quality field survey transmittance (660nm) data and the high resolution bathymetry. The overall accuracy (OA) of the predictive GAM rasters was higher in CLWN (95%, kappa =0.88) than in STJS (82%, kappa = 0.40). The increased prediction error in STJS was spatially correlated with the areas of lower density seagrass along the deep edge of the bed. While there may be a plethora of factors contributing to the decreased density of the seagrass, this may indicate these seagrass were already living at the edge of the suitable habitat. (Abstract shortened by UMI.).
机译:海草资源为许多海洋物种提供了必不可少的生态系统功能。这项研究评估了城市化地区海草资源对海平面上升的影响的脆弱性和可持续性。评估需要分析有关海草资源生物地理的信息,并开发一种方法来模拟适合海草栖息地的空间范围,并应用该模型预测模拟海平面上升情景对海草资源的影响。对海草资源的生物地理学进行研究需要开发海草监测和评估现场调查以及全面的海草资源图(SGRM)。 2006年至2010年,在佛罗里达州Pinellas县的圣约瑟夫峡湾(STJS)和北克利尔沃特港北部(CLWN)设计并进行了中尺度野外调查,以确定该资源的海草种类组成和空间分布。在研究区域发现的海草种类包括丝状丁香(Syringodium filiforme Kutzing)(Syringodium),睾丸目(Thalassia testudinum Banks ex Konig)(塔拉斯(Thallassia))和Walodii wrightii Ascherson(Halodule)。这些海草物种在整个研究区域的所有组合中都出现在单特异性床和混合床中。在空间上,塔拉西亚是STJS的主要近岸,而CLWN是Halodule。在中部至深部,最常见于丁香油中。SGRM是从卫星遥感影像中绘制的,并带有中尺度实地调查数据中的训练信息。处理了Landsat 5专题测绘器(TM)和地球观测-1 Hyperion(HYP),以绘制美国佛罗里达州皮尼拉斯县近岸浅海沿岸研究区海草资源的地图。使用最大似然分类(MLC)将TM和HYP影像都分为海草资源的三类(海草估计覆盖率)。 TM MLC图的总体准确性为91%(kappa = 0.85),HYP为95%(kappa = 0.92)。由于HYP图像中有云层覆盖的区域,因此有必要组合TM MLC的分类值以准确定义这些区域。复合海草资源图的验证准确性(n = 72)为81%,比以前的准确性估计值要严格得多。这些结果支持了遥感方法在分析海草资源空间范围方面的应用。;海草资源空间生境适应性模型(HSM)的开发提供了一种管理工具,可以更好地了解海草,水质,和其他环境因素。开发空间HSM的动机是提供一种空间建模工具,以模拟水质环境的变化并评估对海草资源的潜在影响。高分辨率测深和现场调查水质数据用于将通用添加剂模型(GAM)拟合到STJS(调整后的R2 = 0.72,n = 134)和CLWN(调整后的R2 = 0.75,n = 138)海草资源。最终的GAM包括水质变量,包括盐度,叶绿素a浓度,总悬浮固体,浊度和光照。唯一重要的变量是STJS(p值= 0.001)和CLWN(p值= 0.006)中的光度。照度度量是根据水质现场调查透射率(660nm)数据和高分辨率测深法计算出的对数光衰减。 CLWN(95%,kappa = 0.88)的预测GAM栅格的整体准确性(OA)高于STJS(82%,kappa = 0.40)。 STJS中增加的预测误差在空间上与沿床深边缘的低密度海草区域相关。尽管可能有很多因素导致海草密度降低,但这可能表明这些海草已经生活在合适栖息地的边缘。 (摘要由UMI缩短。)。

著录项

  • 作者

    Meyer, Cynthia A.;

  • 作者单位

    University of South Florida.;

  • 授予单位 University of South Florida.;
  • 学科 Biology Ecology.;Geodesy.;Environmental Management.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 162 p.
  • 总页数 162
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号