首页> 外文学位 >The three dimensional structure of corotating interaction regions and modeling of the heavy ion sensor.
【24h】

The three dimensional structure of corotating interaction regions and modeling of the heavy ion sensor.

机译:同向相互作用区域的三维结构和重离子传感器的建模。

获取原文
获取原文并翻译 | 示例

摘要

Corotating Interaction Regions (CIRs) are compression regions that form in interplanetary space at the interfaces between slow and fast solar wind streams. This dissertation studies the three-dimensional orientation of planar magnetic structures within CIRs near Earth, how their orientation evolves, and the implications for the structure and properties of parent coronal holes. This dissertation also shows our work of modeling the response of the Heavy Ion Sensor (HIS) for the Solar Orbiter mission. We will discuss the methods and results of each chapter below.;In Chapter 2, we have surveyed the properties of 153 co-rotating interaction regions (CIRs) observed at 1 AU from January, 1995 through December, 2008. We identified that 74 of the 153 CIRs contain planar magnetic structures (PMSs). For planar and non-planar CIRs, we compared distributions of the bulk plasma and magnetic field parameters. Our identification of CIRs and their features yields the following results: (1) The thermal, magnetic, and dynamic pressures within CIRs are strongly correlated. (2) There is no statistical difference between planar and non-planar CIRs in the distributions and correlations between bulk plasma and magnetic field parameters. (3) The mean observed CIR azimuthal tilt is within 1 sigma of the predicted Parker spiral at 1 AU, while the mean meridional tilt is about 20°. (4) The meridional tilt of CIRs changes from one solar rotation to the next, with no relationship between successive reoccurrences. (5) The meridional tilt of CIRs in the ecliptic is not ordered by the magnetic field polarity of the parent coronal hole. (6) Although solar wind deflection is a function of CIR shape and speed, the relationship is not in agreement with that predicted by Lee [2000]. We conclude the following: (1) PMSs in CIRs are not caused by a unique characteristic in the local plasma or magnetic field. (2) The lack of relationship between CIR tilt and its parent coronal hole suggests that coronal hole boundaries may be more complex than currently observed. (3) In general, further theoretical work is necessary to explain the observations of CIR tilt.;In Chapter 3 we study the radial evolution of planar magnetic structures in 3 corotating interaction regions (CIRs). We compare our in-situ observations with results from an analytical and a numerical model of CIRs [ Lee, 2000; Odstrcil, 2003]. We find that: (1) All 3 CIRs' meridional tilt retained its North/South orientation at ACE and Ulysses, but the evolution was not systematic. Further, the model results of CIR meridional tilt do not agree with observations. (2) All 3 CIRs rotated azimuthally with the Parker spiral as expected, however model results only describe this behavior quantitatively for 1 CIR. (3) For all 3 CIRs, the solar wind deflection angles were predicted by the coupled solar corona-solar wind models, Wang-Sheely-Arge (WSA)-Enlil and the MHD Around a Sphere (MAS)-Enlil, but neither model was able to reproduce the observed planar magnetic structures. (4) The WSA-Enlil results of azimuthal magnetic field orientation are in better agreement with observations than those based on the MAS-Enlil. We suggest that the evolution of meridional tilt from ACE to Ulysses did not agree with projections because the parent coronal holes were highly structured compared with the idealized shapes assumed in the models. We also suggest that observations of azimuthal tilt do not agree with the model results because the models may be underestimating transverse flows, whereas in reality, these flows could affect the observed azimuthal tilt of the CIR.;In Chapter 4 we characterize the expected behavior of HIS for Solar Orbiter. Solar Orbiter is scheduled to launch in January 2017, and will carry as part of its payload the Heavy Ion Sensor (HIS), one of the instruments of the Solar Wind Analyzer (SWA) instrument suite. Heavy ions of particular interest are Ne, Mg, Si, and S which have been difficult to measure in the past due to their similar mass per charge ratios in the solar wind. We have characterized the response of HIS to these species using a Monte Carlo simulation of the instrument. These simulations use a realistic count rate and account for lost energy and angular scattering of ions passing through a carbon foil, time-of-flight of the secondary electrons, and the pulse height defect within the solid-state detectors. Our results show that HIS is capable of resolving the masses and charge-states of solar wind ions, such as He, C, O, Ne, Mg, and Fe. Our results also indicate that there is some overlap between S and Si.;In Chapter 5 we summarize our results and propose future work.
机译:同向交互作用区域(CIR)是在慢速和快速太阳风流之间的界面处的行星际空间中形成的压缩区域。本文研究了近地CIR内部平面磁结构的三维取向,取向如何演化以及对母体冠状孔结构和性质的影响。本文还展示了我们为太阳轨道飞行器任务对重离子传感器(HIS)的响应进行建模的工作。我们将在下面的每一章中讨论方法和结果。在第二章中,我们调查了1995年1月至2008年12月在1 AU观察到的153个同向交互作用区域(CIR)的性质。 153个CIR包含平面磁结构(PMS)。对于平面和非平面CIR,我们比较了体等离子体和磁场参数的分布。我们对CIR及其特征的识别得出以下结果:(1)CIR中的热,磁和动态压力密切相关。 (2)平面CIR和非平面CIR之间在本体等离子体和磁场参数之间的分布和相关性方面没有统计差异。 (3)在1 AU处,观测到的CIR平均方位角倾斜度在预测派克螺旋线的1σ之内,而平均子午倾斜度约为20°。 (4)CIR的子午线倾斜度从一个太阳旋转改变到另一个太阳旋转,连续的重复之间没有关系。 (5)黄道CIR的子午线倾斜不是由母冠孔的磁场极性决定的。 (6)尽管太阳风的挠度是CIR形状和速度的函数,但这种关系与Lee [2000]的预测并不一致。我们得出以下结论:(1)CIR中的PMS并不是由局部等离子体或磁场的独特特征引起的。 (2)CIR倾斜与其父冠孔之间缺乏联系,表明冠孔边界可能比当前观察到的更为复杂。 (3)通常,需要进一步的理论工作来解释CIR倾斜的观测结果。在第3章中,我们研究了3个同向相互作用区域(CIR)中平面磁结构的径向演化。我们将现场观察结果与CIR的分析模型和数值模型的结果进行了比较[Lee,2000; Odstrcil,2003年]。我们发现:(1)所有3个CIR的子午线倾斜都在ACE和Ulysses处保持其北/南方向,但是演化不是系统的。此外,CIR子午线倾斜的模型结果与观测结果不一致。 (2)所有3个CIR均按预期的派克螺旋线方位角旋转,但是模型结果仅对1个CIR进行了定量描述。 (3)对于所有3个CIR,太阳风偏转角都是通过耦合的太阳日冕-太阳风模型,Wang-Sheely-Arge(WSA)-Enlil和MHD环绕球体(MAS)-Enlil预测的,但没有一个模型能够重现观察到的平面磁性结构。 (4)与基于MAS-Enlil的结果相比,方位角磁场定向的WSA-Enlil结果与观测结果更加吻合。我们建议从ACE到尤利西斯的子午线倾斜的演化与投影不一致,因为与模型中假设的理想形状相比,母体冠状孔高度结构化。我们还建议观测方位角倾斜与模型结果不一致,因为模型可能低估了横向流动,而实际上,这些流动可能会影响观测到的CIR方位倾斜。;在第4章中,我们描述了CIR的预期行为太阳能轨道器的HIS。 Solar Orbiter计划于2017年1月发射,并将作为重物的一部分携带重离子传感器(HIS),这是太阳风分析仪(SWA)仪器套件中的一种。特别令人关注的重离子是Ne,Mg,Si和S,由于它们在太阳风中的单位质量电荷比相似,因此过去很难测量。我们已经使用仪器的蒙特卡洛模拟对HIS对这些物种的响应进行了表征。这些模拟使用了实际的计数率,并解释了通过碳箔的离子的能量损失和角度散射,二次电子的飞行时间以及固态检测器内的脉冲高度缺陷。我们的结果表明,HIS能够解析太阳风离子(例如He,C,O,Ne,Mg和Fe)的质量和电荷态。我们的结果也表明S和Si之间存在一些重叠。在第五章中,我们总结了我们的结果并提出了未来的工作。

著录项

  • 作者

    Broiles, Thomas W.;

  • 作者单位

    The University of Texas at San Antonio.;

  • 授予单位 The University of Texas at San Antonio.;
  • 学科 Physics Astrophysics.;Physics Fluid and Plasma.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 136 p.
  • 总页数 136
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号