首页> 外文学位 >Cellular Model Simulations of Solidification Structures in Ternary Alloys.
【24h】

Cellular Model Simulations of Solidification Structures in Ternary Alloys.

机译:三元合金凝固组织的细胞模型模拟。

获取原文
获取原文并翻译 | 示例

摘要

Solidification processes are an important part of many modem manufacturing processes. They can be found in different casting and welding processes. The solidification structure is very important for the quality of any product manufactured by such processes. This is so because the casting or weldment microstructure determines their mechanical properties. For welding processes, solidification theories can explain the evolution of the fusion zone microstructure and how this microstructure is influenced by the solidification parameters such as the temperature gradient and the solidification rate. In order to investigate the solidification parameters' effect on the microstructure, a numerical model based on Cellular Automaton combined with the finite difference method (CA-FD) is presented in this thesis. The simulation is conducted on a finite three dimensional control volume of the fusion zone. The model takes into account the solute-, curvature-, and kinetic undercooling. The temperatures are assumed to be distributed linearly within the control volume. The model predicts the morphology and density of the microstructure according to different values of the cooling rate and initial temperatures. It is demonstrated that the solidification structure has a columnar morphology at high temperature gradients and low cooling rates. The morphology changes to dendritic as the temperature gradient decreases and/or the cooling rate increases. It is also shown that an increase in the cooling rate results in the densification of the solidification structure. The results demonstrate that an increase in the initial substrate roughness can result in the increase in the density of the solidification structure. The simulation results show an agreement with the constitutional undercooling theory of solidification structures.
机译:固化过程是许多现代制造过程的重要组成部分。它们可以在不同的铸造和焊接过程中找到。固化结构对于通过这种方法生产的任何产品的质量非常重要。之所以如此,是因为铸件或焊件的微观结构决定了它们的机械性能。对于焊接过程,凝固理论可以解释熔合区微观结构的演变以及该微观结构如何受到凝固参数(例如温度梯度和凝固速率)的影响。为了研究凝固参数对显微组织的影响,本文提出了一种基于元胞自动机结合有限差分法(CA-FD)的数值模型。模拟是在融合区域的有限三维控制体积上进行的。该模型考虑了溶质,曲率和动力学过冷。假定温度在控制区内线性分布。该模型根据冷却速率和初始温度的不同值预测微观结构的形态和密度。结果表明,该凝固组织在高温梯度和低冷却速率下具有柱状形态。随着温度梯度减小和/或冷却速率增加,形态改变为树枝状。还显示出,冷却速率的增加导致固化结构的致密化。结果表明,初始基底粗糙度的增加可以导致固化结构的密度的增加。仿真结果表明与凝固组织的构造过冷理论相吻合。

著录项

  • 作者

    Alsoruji, Ghazi H.;

  • 作者单位

    Carleton University (Canada).;

  • 授予单位 Carleton University (Canada).;
  • 学科 Engineering Mechanical.;Engineering Materials Science.
  • 学位 M.A.Sc.
  • 年度 2013
  • 页码 112 p.
  • 总页数 112
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号