首页> 外文学位 >Acoustic and elastic reverse-time migration: Novel angle-domain imaging conditions and applications .
【24h】

Acoustic and elastic reverse-time migration: Novel angle-domain imaging conditions and applications .

机译:声学和弹性逆时偏移:新型角域成像条件和应用。

获取原文
获取原文并翻译 | 示例

摘要

Reverse time migration (RTM) has become a superior choice in seismic imaging due to its capability of handling of rapid spatial velocity variation and imaging without dip angle limitations. By adopting the full-wave propagator, RTM is very accurate to reconstruct the source and receiver wavefields. As the conventional zero-lag cross-correlation imaging condition is applied to the reconstructed wavefields, we can achieve the primary goal of the seismic imaging, which is, to produce a geometrical image of the subsurface structures. However, for further exploration of the subsurface information carried by the reconstructed wavefields, more sophisticated imaging conditions are demanded. For example, to remove RTM low-wavenumber artifacts, we need to incorporate the angle information in the imaging condition. To deal with multicomponent elastic data, we need to separate the wavefields into P- and S- modes before applying the imaging condition. To provide information for migration velocity updating, we need to expand the stacked image into various types of common image gathers, such as in angle, offset, shot, etc. To retrieve the properties of the interfaces, we need to recover amplitude versus angle (AVA) and account for the propagation and acquisition effects in the imaging condition.;Many of those advanced imaging conditions require working in the local angle domain. However, unlike in the ray-based methods, the angle information is not explicitly given in reverse time migration. In this thesis, great efforts are expended to extract the angle information from the migrated wavefields. The local slant stacking is employed to decompose the full acoustic and elastic wavefields into a superposition of localized plane waves and separate the vectorized waves into P- and S-waves. It serves as the fundamental technique in the following part of the thesis to develop angle-domain imaging condition.;In the included chapters, first, we construct local image matrix (LIM) by cross-correlating the decomposed plane-wave components from the source wavefield and those from the receiver wavefield. With the introduction of the angle-domain operators to local image matrix, we remove the strong artifacts existed in PP image and correct the polarization problem in PS image. Second, we generate gathers of various sorts from LIM, such as the common reflection-angle gather (generally called angle-domain common image gather) and common dip-angle gather. The angle-domain common image gather is a powerful tool for migration velocity analysis. Third, we derive the theory of true-amplitude imaging in local angle domain. We calculate the target illumination matrix with the plane wave components of background Green's function under the survey configuration and use it to correct LIM. Similarly, we output dip-angle-dependent illumination (generally called acquisition dip response) and reflection-angle-dependent illumination from target illumination matrix. Fourth, we retrieve the AVA responses by normalizing angle-domain common image gathers with the reflection-angle-dependent illuminations, and cross-plot them to detect the reservoir characterization. Fifth, we compensate the common dip-angle gathers with acquisition dip responses and sum them up to form a true-amplitude image. Due to the tremendous computations involved in the true-amplitude problems, we develop efficient algorithms to make these calculations practical and affordable. Numerical examples demonstrate the applications of angle-domain imaging conditions to angle gather extraction, AVA analysis and true-amplitude imaging.
机译:逆时偏移(RTM)已成为地震成像中的上乘之选,因为它具有处理快速空速变化和成像而不受倾角限制的能力。通过采用全波传播器,RTM可以非常精确地重建源波和接收器波场。将常规的零时滞互相关成像条件应用于重建的波场,就可以实现地震成像的主要目标,即产生地下结构的几何图像。然而,为了进一步探索由重构波场携带的地下信息,需要更复杂的成像条件。例如,要去除RTM低波数伪像,我们需要在成像条件下合并角度信息。为了处理多分量弹性数据,我们需要在应用成像条件之前将波场分为P模式和S模式。为了提供更新速度的信息,我们需要将堆叠的图像扩展为各种类型的常用图像集,例如角度,偏移,散布等。要检索界面的属性,我们需要恢复幅度与角度的关系( AVA)并考虑了成像条件下的传播和采集效果。;许多高级成像条件需要在局部角度域内工作。但是,与基于射线的方法不同,在逆时偏移中未明确给出角度信息。本文为从迁移后的波场中提取角度信息付出了巨大的努力。使用局部倾斜叠加将完整的声波和弹性波场分解为局部平面波的叠加,并将矢量化波分离为P波和S波。它是本文后续部分发展角域成像条件的基础技术。;在所包含的章节中,首先,通过对来自源的分解后的平面波分量进行互相关来构造局部图像矩阵(LIM)。波场和来自接收器波场的波场。通过将角域算子引入局部图像矩阵,我们消除了PP图像中存在的强烈伪影,并纠正了PS图像中的偏振问题。其次,我们从LIM生成各种类型的聚集,例如公共反射角聚集(通常称为角度域公共图像聚集)和公共倾斜角聚集。角域公共图像采集是迁移速度分析的强大工具。第三,我们推导了局部角域中真实振幅成像的理论。我们在调查配置下利用背景格林函数的平面波分量计算目标照明矩阵,并将其用于校正LIM。同样,我们从目标照明矩阵输出依赖于倾角的照明(通常称为采集倾角响应)和依赖于反射角的照明。第四,我们通过对与反射角相关的照明进行归一化,对角域公共图像集进行归一化来检索AVA响应,并对它们进行交绘图以检测储层特征。第五,我们用采集倾角响应补偿常见的倾角道集,并将其求和以形成一个真实振幅图像。由于涉及真振幅问题的大量计算,我们开发了有效的算法来使这些计算实用且负担得起。数值算例说明了角域成像条件在角集提取,AVA分析和真实振幅成像中的应用。

著录项

  • 作者

    Yan, Rui.;

  • 作者单位

    University of California, Santa Cruz.;

  • 授予单位 University of California, Santa Cruz.;
  • 学科 Philosophy of Science.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 229 p.
  • 总页数 229
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:41:23

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号