首页> 外文学位 >Micromechanical Modeling of Composite Materials Using the Finite Element Method for Balancing Discretization and Material Modeling Error.
【24h】

Micromechanical Modeling of Composite Materials Using the Finite Element Method for Balancing Discretization and Material Modeling Error.

机译:使用有限元方法来平衡离散化和材料建模误差的复合材料微机械建模。

获取原文
获取原文并翻译 | 示例

摘要

The goal of this research is to advance computer modeling capabilities to combine with or replace experimental testing of composite materials. To be able to achieve this goal, modeling techniques are implemented, with the aim of combining computational efficiency and accuracy. To do this the sources of error need to be mitigated when performing meso-scale numerical tests on micromechanical composite materials. The sources of error are discretization when meshing in finite elements, and material modeling error. As the refinement of a finite element mesh increases, the error decreases and the computational cost increases. In some cases it has been shown that increasing the size of a material being homogenized increases the accuracy of the prediction of the material properties, as the size of the material approaches a representative volume.;Various homogenization methods have different degrees of accuracy and computational efficiency. Homogenization often requires definition of a representative volume element (RVE). This definition creates a model of a finite magnitude that represents an equivalent homogenous material. The technique is used in the investigation of several simple structures in this work.;A statistical volume element (SVE) at the meso-scale defines an element on a smaller scale than the RVE but is still larger than the micro-scale. The SVE is used to statistically analyze the stiffness properties of a model on the meso-scale, where the meso-scale is defined as any scale between the micro and macro-scales. Moving window (MW) homogenization is an improved alternative to homogenizing the entire structure. Moving window homogenization is shown to increase accuracy, when to compared to benchmark results.
机译:这项研究的目的是提高计算机建模功能,以与复合材料的实验测试结合或替代。为了能够实现此目标,实施了建模技术,目的是将计算效率和准确性结合在一起。为此,在微机械复合材料上进行中尺度数值测试时,需要减少误差来源。误差的来源是在有限元中进行网格划分时的离散化以及材料建模误差。随着有限元网格细化的增加,误差减小,并且计算成本增加。在某些情况下,已经显示出随着材料的尺寸接近代表性体积而增加被均质化的材料的尺寸会提高材料特性预测的准确性。各种均质化方法具有不同的精度和计算效率。均质化通常需要定义代表性的体积元素(RVE)。该定义创建了一个代表等效均质材料的有限量级模型。该技术用于这项工作中几个简单结构的研究。中观尺度上的统计体积元素(SVE)定义的尺度小于RVE,但仍大于微观尺度。 SVE用于在中尺度上统计分析模型的刚度属性,其中中尺度定义为微观尺度和宏观尺度之间的任何尺度。移动窗口(MW)均质化是使整个结构均质化的改进方法。与基准结果相比,移动窗口的均质性可以提高准确性。

著录项

  • 作者

    Lindberg, Sara Carol.;

  • 作者单位

    University of Minnesota.;

  • 授予单位 University of Minnesota.;
  • 学科 Engineering Civil.;Engineering Mechanical.
  • 学位 M.S.
  • 年度 2013
  • 页码 91 p.
  • 总页数 91
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号