首页> 外文学位 >Identification of structure-specific damage growth properties and its impact on improved prognosis.
【24h】

Identification of structure-specific damage growth properties and its impact on improved prognosis.

机译:确定特定结构的损伤生长特性及其对改善预后的影响。

获取原文
获取原文并翻译 | 示例

摘要

Structural health monitoring (SHM) employs sensor data to monitor fatigue-induced damage growth in service. Damage growth information can be used to improve the characterization of the material properties that govern damage propagation for the structure being monitored, turning aircrafts into flying fatigue laboratories. Initially, these properties are often widely distributed between nominally identical structures because of differences in manufacturing processes and aging effects. SHM data, in particular, measured crack growth are used to narrow the distribution of damage growth parameters using the Bayesian inference technique. The improved accuracy in damage growth parameters allows a more accurate prediction of the remaining useful life (RUL) of the monitored structural component. It can also help in predicting damage growth of other similar components.;In the absence of actual SHM data, we had to simulate measured data by applying error models to damage sizes obtained using Paris' law as a damage growth model. We consider that there are two kinds of errors, random noises resulting from the measurement environment and a deterministic bias resulting from the sensor's calibration or modeling error.;The Bayesian inference method is used for progressively reducing the uncertainty in structure-specific damage growth parameters in spite of noise and bias in sensor measurements. However, the Bayesian inference method is computationally intensive due to uncertainty propagation in likelihood calculation, which results in a difficulty in handling multi-parameter identification, and may not be feasible to use with an extremely large number of measurement data. On the other hand, least-square fitting of damage growth parameters is efficient, but it does not provide good statistical information on the uncertainty in their estimates and in RUL estimates. It is in particular efficient to identify deterministic variables such as bias. In the proposed research, we combined the two approaches by using the least-square approach to filter the data and then performing Bayesian inference. The proposed approach is applied to crack growth in fuselage panels due to cycles of pressurization. It is shown that the proposed method rapidly converges to accurate damage parameters with much smaller uncertainties. Fairly accurate damage growth parameters were also obtained with measurement errors of 5mm. Using the identified damage parameters, it is shown that the 95% conservative RUL converges to the true RUL from the conservative side.
机译:结构健康监测(SHM)使用传感器数据来监测服务中疲劳引起的损伤增长。损伤增长信息可用于改善对受监控结构的损伤传播进行控制的材料特性的表征,从而使飞机成为飞行疲劳实验室。最初,由于制造工艺和时效的差异,这些性能通常在名义上相同的结构之间广泛分布。 SHM数据(特别是测得的裂纹扩展)使用贝叶斯推断技术来缩小损伤扩展参数的分布。损伤增长参数精度的提高允许更准确地预测受监视结构部件的剩余使用寿命(RUL)。它也可以帮助预测其他类似组件的损坏增长。在没有实际SHM数据的情况下,我们必须通过将误差模型应用于使用巴黎定律作为损坏增长模型获得的损坏大小来模拟测量数据。我们认为存在两种误差,一种是测量环境导致的随机噪声,另一种是由于传感器的校准或建模误差导致的确定性偏差。贝叶斯推理方法用于逐步降低结构特定损伤增长参数的不确定性。尽管在传感器测量中存在噪声和偏差。然而,由于似然计算中的不确定性传播,贝叶斯推断方法在计算上是密集的,这导致在处理多参数识别方面存在困难,并且可能不适用于大量测量数据。另一方面,损害增长参数的最小二乘拟合是有效的,但不能提供有关其估计和RUL估计中的不确定性的良好统计信息。识别确定性变量(例如偏差)特别有效。在拟议的研究中,我们通过使用最小二乘法对数据进行过滤,然后执行贝叶斯推理,将两种方法结合起来。所提出的方法被应用于由于加压循环而导致的机身面板的裂纹扩展。结果表明,所提出的方法可以迅速收敛到准确的损伤参数,不确定性要小得多。还获得了相当精确的损伤增长参数,测量误差为5mm。使用识别出的损伤参数,可以看出,从保守方面来看,95%的保守RUL收敛到了真实的RUL。

著录项

  • 作者

    Coppe, Alexandra.;

  • 作者单位

    University of Florida.;

  • 授予单位 University of Florida.;
  • 学科 Engineering Aerospace.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 140 p.
  • 总页数 140
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号