首页> 外文学位 >Quantifying soil organic matter and young stand development in managed California forests.
【24h】

Quantifying soil organic matter and young stand development in managed California forests.

机译:定量管理加利福尼亚森林中的土壤有机质和幼林发育。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation focuses on quantifying managed forest ecosystems in northern California to assess C and energy stored in soil organic matter (SOM) and management practices that alter productivity and water relations in young planted stands.;Estimates of soil C pools across the landscape are uncertain due to intrinsic SOM variability at local spatial scales (m2 to hectare). Variability requires the collection and analysis of large sample sets, which are time (collect, handle & prepare samples) and cost (labor & analysis) intensive, and the primary barrier to accurate soil C quantification. Sample collection is unavoidable but new techniques, that reduce the time and cost associated with analysis, would greatly aid the development of soil C budgets at management scales (plot, field or soil series). In this study we developed predictive relationships between soil darkness and SOM/C demonstrating the value of quantitative soil color measurements to function as a proximal descriptor of soil C content. This simple low cost technique provides a new tool to produce soil C estimates and facilitate spatially explicit data development across diverse soils. Energetic properties of two forested Ultisols -thermal stability, energetic equilibrium and organo-metallic associations.;In this study we investigate the thermochemistry of two forest Ultisols in Northern California with TG-DSC and analytical modeling. Our results demonstrate the influence of substrate availability and mineral constituents on SOM TS & De with highly reactive poorly crystalline Fe-oxides drastically altering energetic properties compared to more crystalline Al-oxides. These findings provide an alternative interpretation of soil thermochemical data and illustrate the fundamental limitation of our current understanding of organo-metallic bond stability and energy dynamics in soil.;The establishment and growth of young conifer stands are essential components of resilient forested landscapes. In California, summer seasonal drought, combined with vigorous understory growth in disturbed or newly planted stands, can produce severe resource limitations (water and nutrients) that restrict productivity and can cause mortality (Powers and Ferrell, 1996). Common silvicultural practices, that reduce competition and enhance site nutrient availability, are effective at increasing productivity but the effects on young tree physiology are not well understood.;Physical and chemical analysis of tree rings provides insight to understand the interaction between growth, water relations and the environment (Andreu-Hayles et al, 2011) with isotopic analysis providing a powerful tool to study physiological responses over time (Maseyk et al, 2011). The analysis of δ13C in annual growth rings supports the calculation of intrinsic water use efficiency (iWUE), which integrates the effects of photosynthetic CO2 assimilation (A) and stomatal conductance (gs) in a simple ratio (A/gs). iWUE varies across time driven by environmental (Soule and Knapp, 2011; McDowell et a, 2010) and management influences (McDowell et al, 2003) but δ13C alone provides no indication if alteration of A or gs was the factor driving change (Scheidegger et al., 2000). Coupled analyses of δ13C and δ18O provide the resolution to detangle the influence of each factor in experimentally manipulated stands (Brooks and Mitchell, 2010) with δ18O capturing the combined effects of stomatal conductance and evaporative enrichment on water used during photosynthesis.;In the study we assessed the growth and physiology of early ponderosa pine stands across sites with varying precipitation and productivity to quantify the effects of reduced competition and enhanced nutrient availability. Our results show gs is the most important factor controlling iWUE during early growth and soils are generally nutrient limited at all sites. At drier sites, increasing plant available water or photosynthetic efficiency produced comparable growth. Combining reduced competition and fertilization produced synergistic growth and unexpeceted levels of maximum growth at each site. 9Abstract shortened by UMI.).
机译:本论文的重点是量化北加州的可管理森林生态系统,以评估土壤有机质(SOM)中储存的碳和能量,以及改变幼龄林中生产力和水关系的管理实践。局部空间尺度(m2至公顷)的固有SOM变异性。可变性要求收集和分析大型样本集,这需要大量时间(收集,处理和准备样本)和成本(人工和分析),并且是准确进行土壤C定量分析的主要障碍。样品收集是不可避免的,但是新技术可以减少与分析相关的时间和成本,将大大有助于在管理规模(地块,田间或土壤系列)上制定土壤碳预算。在这项研究中,我们开发了土壤黑暗度与SOM / C之间的预测关系,证明了定量土壤颜色测量的价值可作为土壤C含量的近端描述符。这种简单的低成本技术提供了一种新的工具来产生土壤碳估算值,并促进了在各种土壤上空间显式数据的开发。两种森林Ultisols的能量性质-热稳定性,能量平衡和有机金属缔合。在本研究中,我们使用TG-DSC和分析模型研究了北加州两种森林Ultilus的热化学。我们的结果证明了底物可用性和矿物成分对SOM TS&De的影响,与更多结晶的Al-氧化物相比,高反应性的结晶性较弱的Fe-氧化物能极大地改变能量性质。这些发现为土壤热化学数据提供了另一种解释,并说明了我们目前对土壤中有机金属键的稳定性和能量动态的理解的基本局限性。针叶树幼林的建立和生长是弹性森林景观的重要组成部分。在加利福尼亚州,夏季季节性干旱,再加上受干扰或新栽种的林分的剧烈的林下生长,会产生严重的资源限制(水和养分),从而限制生产力并导致死亡(Powers和Ferrell,1996)。减少竞争和增加站点养分利用率的常规营林措施可以有效提高生产力,但对幼树生理的影响尚不十分清楚。;对树木年轮的物理和化学分析提供了洞察力,以了解生长,水关系和环境之间的相互作用。同位素分析为环境(Andreu-Hayles等,2011)提供了一个强大的工具,可以研究一段时间内的生理反应(Maseyk等,2011)。对年轮中δ13C的分析支持计算内在用水效率(iWUE),该效率以简单比率(A / gs)集成了光合CO2同化(A)和气孔电导(gs)的影响。 iWUE随时间受环境(Soule和Knapp,2011; McDowell等,2010)和管理影响(McDowell等,2003)的驱动而变化,但是单独的δ13C不能说明A或gs的变化是否是驱动变化的因素(Scheidegger等)。等(2000)。对δ13C和δ18O的耦合分析提供了解决方案,可以解决实验操纵的林分中各个因素的影响(Brooks和Mitchell,2010),而δ18O则捕获了气孔电导和蒸发富集对光合作用中所用水的综合作用。在不同降水量和生产力的地点评估了美国黄松松林的生长和生理,以量化减少竞争和提高养分利用率的影响。我们的结果表明,gs是控制iWUE早期生长的最重要因素,并且土壤在所有地点的养分普遍受到限制。在较干燥的地方,植物可用水或光合作用效率的提高产生了可比的增长。减少竞争和施肥相结合,在每个地点产生了协同增长和最大增长的空前水平。 9摘要由UMI缩短。)。

著录项

  • 作者

    Liles, Garrett Cambell.;

  • 作者单位

    University of California, Davis.;

  • 授予单位 University of California, Davis.;
  • 学科 Biogeochemistry.;Agriculture Forestry and Wildlife.;Agriculture Soil Science.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 119 p.
  • 总页数 119
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号