首页> 外文学位 >Fluids, form, and function: The role of fluid dynamics in the evolution of stalactites, icicles, and aquatic microorganisms.
【24h】

Fluids, form, and function: The role of fluid dynamics in the evolution of stalactites, icicles, and aquatic microorganisms.

机译:流体,形式和功能:流体动力学在钟乳石,冰柱和水生微生物进化中的作用。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation is devoted to better understanding the role that fluids play in the selection of the shapes and functions of objects and creatures in nature. Toward that end, three specific examples are considered: stalactites, icicles, and species of colonial green algae known as Volvox. In the cases of stalactites and icicles, the object's growth is considered as a free-boundary problem. For stalactites, the coupling of thin-film fluid dynamics with calcium carbonate chemistry leads to a local, geometric growth law that is proportional to the thickness of the water layer covering the surface at any point. Application of this law to a uniformly translating shape allows a universal stalactite form to be derived; the comparison of this shape to images of actual stalactites supports the theory. In the case of icicles, the transport of the latent heat of fusion is coupled with the dynamics of both the thin-film of water encompassing the icicle and a thermally buoyant boundary layer in the immediately surrounding air. The uniformly translating shape solution is found to be parameter-free, and is, in fact, the same shape exhibited by stalactites. A comparison between this shape and icicle images validates the theory. The final example considers how advection of nutrients due to the stirring of water by the flagella of a Volvox colony leads to a metabolite uptake rate that is much greater than would occur by diffusion alone. Moreover, nutrient acquisition by pure diffusion would limit the size of Volvox species to a certain bottleneck radius at the point where diffusional uptake just meets metabolic demands, whereas advection increases the uptake in such a way as to avoid this problem entirely, thus enabling the evolution of the larger Volvox species.
机译:本论文致力于更好地理解流体在自然界中物体和生物的形状和功能选择中所起的作用。为此,考虑了三个具体示例:钟乳石,冰柱和被称为Volvox的殖民绿藻物种。在钟乳石和冰柱的情况下,物体的生长被认为是自由边界的问题。对于钟乳石,薄膜流体动力学与碳酸钙化学的耦合会导致局部几何增长定律,该定律与在任何点覆盖表面的水层厚度成比例。将该法则应用于均匀平移的形状,可以得到通用的钟乳石形式。将这种形状与实际钟乳石的图像进行比较可以支持该理论。在冰柱的情况下,熔化潜热的传输与包围冰柱的水的薄膜和紧邻的空气中的热浮力边界层的动力学有关。发现均匀平移的形状解决方案没有参数,并且实际上是钟乳石呈现的相同形状。这种形状和冰柱图像之间的比较验证了该理论。最后一个例子考虑了由于沃尔沃克斯菌落的鞭毛搅动水而引起的养分平流如何导致代谢物吸收速率远大于单独扩散时的吸收速率。此外,通过纯扩散获取营养物会在扩散吸收刚好满足新陈代谢需求的点将Volvox物种的大小限制在一定的瓶颈半径,而平流增加了吸收,从而完全避免了这个问题,从而使进化成为可能较大的Volvox物种。

著录项

  • 作者

    Short, Martin Bowen.;

  • 作者单位

    The University of Arizona.;

  • 授予单位 The University of Arizona.;
  • 学科 Physics Condensed Matter.;Biology Microbiology.;Biophysics General.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 74 p.
  • 总页数 74
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号