首页> 外文学位 >Plasmonic properties and enhanced fluorescence of gold and dye-doped silica nanoparticle aggregates.
【24h】

Plasmonic properties and enhanced fluorescence of gold and dye-doped silica nanoparticle aggregates.

机译:金和染料掺杂的二氧化硅纳米粒子聚集体的等离子体特性和增强的荧光。

获取原文
获取原文并翻译 | 示例

摘要

The development of metal-enhanced fluorescence has prompted a great interest in augmenting the photophysical properties of fluorescent molecules with noble metal nanostructures. Our research efforts, outlined in this dissertation, focus on augmenting properties of fluorophores by conjugation with gold nanostructures. The project goals are split into two separate efforts; the enhancement in brightness of fluorophores and long distance non-radiative energy transfer between fluorophores. We believe that interacting dye-doped silica nanoparticles with gold nanoparticles can facilitate both of these phenomena.;Our primary research interest is focused on optimizing brightness, as this goal should open a path to studying the second goal of non-radiative energy transfer. The two major challenges to this are constructing suitable nanomaterials and functionalizing them to promote plasmonically active complexes.;The synthesis of dye-doped layered silica nanoparticles allows for control over the discrete location of the dye and a substrate that can be surface functionalized. Controlling the exact location of the dye is important to create a silica spacer, which promotes productive interactions with metal nanostructures. Furthermore, the synthesis of silica nanoparticles allows for various fluorophores to be studied in similar environments (removing solvent and other chemo-sensitive issues).;Functionalizing the surface of silica nanoparticles allows control over the degree of silica and gold nanoparticle aggregation in solution. Heteroaggregation in solution is useful for producing well-aggregated clusters of many gold around a single silica nanoparticle. The dye-doped surface functionalized silica nanoparticles can than be mixed efficiently with gold nanomaterials.;Aggregating multiple gold nanospheres around a single dye-doped silica nanoparticle can dramatically increase the fluorescent brightness of the sample via metal-enhanced fluorescence due to increase plasmonic scattering. Our aim is to promote heteroaggregation with functionalized silica nanoparticles while minimizing homoaggregation of silica-silica or gold-gold species. Reproducible production of multiple gold nanospheres about a dye-doped silica nanoparticle should lead to dramatic fluorescence brightness enhancements in solution.;Gold nanorods can potentially be used to establish radiationless energy transfer between hetero dye-doped silica nanoparticles via gold nanorod plasmon mediated FRET by aggregating two different dye-doped silica nanoparticles preferentially at opposite ends of the nanorod. End-cap binding is accomplished by tuning the strength of gold binding ligands that functionalize the surface of the silica nanoparticles. The gold nanorod can then theoretically serve as a waveguide by employing the longitudinal plasmon as a non-radiative energy transfer agent between the two different fluorophores, giving rise to a new ultrafast signaling paradigm. Heteroaggregation of dye-doped silica nanoparticles and gold nanorods can be potentially employed to as nano waveguides.;Construction and aggregation of functionalized silica and gold nano-materials provides an opportunity to advance the field of fluorescence. The synthesis of gold nano-particles allows control over their size and shape, which give rise to useful optical and electronic properties. Silica nanoparticles provide a framework allowing control over a requisite distance for increasing beneficial and deceasing non-radiative dye-metal interactions as well fluorophore protection. Our aim is to take advantage of fine-tuned synthetic control of functionalized nanomaterials to realize the great potential of solution based metal-enhanced fluorescence for future applications.
机译:金属增强荧光的发展引起了人们对增强具有贵金属纳米结构的荧光分子的光物理性质的极大兴趣。本文概述了我们的研究工作,重点是通过与金纳米结构的结合来增强荧光团的性能。项目目标分为两个单独的工作; 荧光团亮度的增强和荧光团之间的长距离非辐射能量转移。我们相信染料掺杂的二氧化硅纳米粒子与金纳米粒子的相互作用可以促进这两种现象。关于优化亮度,因为这个目标应该为研究非辐射能量转移的第二个目标开辟道路。对此的两个主要挑战是构建合适的纳米材料并对其进行功能化以促进等离子体活性复合物。染料掺杂的层状二氧化硅纳米粒子的合成可以控制染料和可以进行表面功能化的基质的离散位置。控制染料的确切位置对于创建二氧化硅间隔基非常重要,该间隔基可促进与金属纳米结构的有效相互作用。此外,二氧化硅纳米粒子的合成允许在相似的环境中研究各种荧光团(去除溶剂和其他对化学敏感的问题)。使二氧化硅纳米粒子的表面功能化可以控制溶液中二氧化硅和金纳米粒子的聚集程度。溶液中的异质聚集可用于在单个二氧化硅纳米粒子周围产生许多金的聚集良好的簇。染料掺杂的表面官能化的二氧化硅纳米粒子可以与金纳米材料有效地混合。在单个染料掺杂的二氧化硅纳米粒子周围聚集多个金纳米球可以通过金属增强荧光显着增加样品的荧光亮度,这是由于等离激元散射增加了。我们的目标是促进官能化二氧化硅纳米粒子的异质聚集,同时最大程度地减少二氧化硅-二氧化硅或金-金物种的均匀聚集。染料掺杂的二氧化硅纳米粒子可重现多个金纳米球的产生应导致溶液中荧光亮度的显着提高。;金纳米棒可潜在地用于通过金纳米棒等离子体激元介导的FRET通过聚集而在杂色染料掺杂的二氧化硅纳米粒子之间建立无辐射能量转移。两个不同的染料掺杂的二氧化硅纳米粒子优先位于纳米棒的相对两端。通过调节使二氧化硅纳米颗粒表面官能化的金结合配体的强度来完成封端结合。然后,通过在两个不同的荧光团之间采用纵向等离子体激元作为非辐射能量转移剂,金纳米棒理论上可以用作波导,从而产生了新的超快信号范式。染料掺杂的二氧化硅纳米粒子和金纳米棒的异质聚集可以潜在地用作纳米波导。功能化二氧化硅和金纳米材料的构建和聚集提供了推进荧光领域的机会。金纳米粒子的合成可以控制其尺寸和形状,从而产生有用的光学和电子性能。二氧化硅纳米粒子提供了一个框架,该框架允许控制必要的距离,以增加有益的和减少的非辐射染料-金属相互作用以及荧光团保护。我们的目标是利用功能化纳米材料的精细合成控制优势,实现基于溶液的金属增强荧光在未来应用中的巨大潜力。

著录项

  • 作者

    Green, Nathaniel Scott.;

  • 作者单位

    The University of Oklahoma.;

  • 授予单位 The University of Oklahoma.;
  • 学科 Chemistry General.;Chemistry Inorganic.;Nanotechnology.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 250 p.
  • 总页数 250
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号