首页> 外文学位 >Terrestrial dissolved organic matter flux from melting permafrost may stimulate Arctic marine bacterial nitrate uptake.
【24h】

Terrestrial dissolved organic matter flux from melting permafrost may stimulate Arctic marine bacterial nitrate uptake.

机译:来自永久冻土融化的陆地溶解有机物通量可能会刺激北极海洋细菌吸收硝酸盐。

获取原文
获取原文并翻译 | 示例

摘要

Climate change is increasing Arctic air and ocean temperatures causing mobilization of terrestrial organic material (tDOM) from permafrost (IPCC, 2007; Peterson et al. 2002). Carbon contained in tDOM is predicted to be released at 10 times the current rate by 2100, ultimately causing higher coastal tDOM concentrations. Marine bacteria are the main organisms which biodegrade DOM in oceans, but uptake of carbon from this material is likely to be stoichiometrically unbalanced with nitrogen uptake due to the high carbon to nitrogen ratio (20--60) of Arctic tDOM and the apparent recalcitrance of nitrogen associated with Arctic tDOM (Tank et al 2012). Since Arctic Ocean bacteria are carbon limited, tDOM flux from melting permafrost could increase bacterial activity by providing carbon substrates resulting in higher demand for exogenous nitrogen. Nitrate is the most likely nitrogen substituent to satisfy new bacterial demand because of high concentrations in the coastal Arctic. However, increased bacterial nitrate uptake could come at the expense of primary production because nitrate is the limiting nutrient during summer phytoplankton blooms.;Another consequence of Arctic warming is the projected decrease in sea-ice extent and thickness on the Arctic Ocean (Belanger et al. 2006). Decreased sea-ice will lead to increased ultra violet (UV) radiation from the sun, which photodegrades DOM and can alter its lability and stoichiometry. The fate and ecological effect of tDOM once it enters the ocean will likely be controlled by a mixture of biological and photochemical processes.;The primary focus of this study was to investigate the hypothesis that tDOM amendments to bioassays containing coastal Arctic bacteria would increase bacterial nitrate demand. Secondarily, this study tested if tDOM photodegradation could cause changes in tDOM lability, % bioavailability, and bacterial nitrate demand.;Phytoplankton and grazer-free Arctic seawater bioassays were conducted in the dark, and were amended with tDOM, tDOM and arginine, photodegraded tDOM, glucose, or were unamended to test these hypotheses. In bioassays amended with tDOM and glucose, partial or complete nitrate assimilation occurred that was coincident with reductions in DOC. Nitrate assimilation did not occur in assays amended with tDOM and arginine or in unamended assays. When photodegraded tDOM was added to bioassays, overall DOC and nitrate utilization decreased compared to assays amended with non-photodegraded tDOM, indicating a decrease in % bioavailability. However, tDOM irradiation increased bacterial growth rates and DOM reactivity.;These results provide evidence that increased tDOM flux to the Arctic Ocean will increase microbial competition for nitrogen. However, the effects of melting permafrost on the Arctic Ocean will be mediated by not only bacterial utilization, but also by photodegradation. Proposed future studies will utilize more complex microbial assemblages utilizing mesocosm-size assays to investigate nitrogen competition between heterotrophs and autotrophs caused by tDOM loading.
机译:气候变化使北极的空气和海洋温度升高,导致永久性冻土中的陆地有机物质(tDOM)动员起来(IPCC,2007; Peterson等,2002)。到2100年,tDOM中所含的碳预计以当前速率的10倍释放,最终导致沿海tDOM浓度升高。海洋细菌是海洋中降解DOM的主要生物,但是由于北极tDOM的高碳氮比(20--60)和明显的顽固性,从该物质吸收的碳在化学计量上与氮的吸收不平衡。与北极tDOM相关的氮(Tank等,2012)。由于北冰洋细菌受到碳的限制,因此融化的永冻土中的tDOM通量可以通过提供碳底物来增加细菌活性,从而导致对外源氮的更高需求。由于北极沿海地区的高浓度,硝酸盐是最有可能满足新细菌需求的氮取代基。然而,增加细菌对硝酸盐的吸收可能以初级生产为代价,因为硝酸盐是夏季浮游植物开花期间的限制养分。;北极变暖的另一个后果是预计北冰洋的海冰范围和厚度将减少(Belanger et al。 (2006年)。海冰减少会导致太阳紫外线(UV)辐射增加,从而使DOM光降解,并改变其不稳定性和化学计量。 tDOM进入海洋后的命运和生态影响很可能受到生物和光化学过程的混合控制。这项研究的主要重点是研究以下假设:对包含沿海北极细菌的生物测定法进行tDOM修正会增加细菌硝酸盐需求。其次,该研究测试了tDOM的光降解是否会导致tDOM的不稳定性,生物利用度百分比和细菌硝酸盐需求的变化。;在黑暗中进行了浮游植物和无掠食性北极海水生物测定,并用tDOM,tDOM和精氨酸对光降解的tDOM进行了修改,葡萄糖或未经修改即可检验这些假设。在用tDOM和葡萄糖修正的生物测定中,发生了部分或完全的硝酸盐同化,这与DOC降低同时发生。在用tDOM和精氨酸修正的测定中或在未修正的测定中未发生硝酸盐同化。当将光降解的tDOM添加到生物测定中时,与使用非光降解的tDOM修改的测定相比,总DOC和硝酸盐利用率降低了,表明生物利用度降低。然而,tDOM辐照增加了细菌的生长速率和DOM反应性。这些结果提供了增加的tDOM通向北冰洋的通量将增加微生物对氮的竞争的证据。但是,永久冻土融化对北冰洋的影响将不仅通过细菌利用来实现,而且通过光降解来实现。拟议的未来研究将利用中宇宙大小测定法利用更复杂的微生物组合研究由tDOM负载引起的异养与自养之间的氮竞争。

著录项

  • 作者

    Tait, Zachary Stephen.;

  • 作者单位

    Savannah State University.;

  • 授予单位 Savannah State University.;
  • 学科 Biology Microbiology.;Biogeochemistry.
  • 学位 M.S.M.S.
  • 年度 2013
  • 页码 104 p.
  • 总页数 104
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号