首页> 外文学位 >Scalable molecular dynamics simulation using FPGAs and multicore processors.
【24h】

Scalable molecular dynamics simulation using FPGAs and multicore processors.

机译:使用FPGA和多核处理器进行可扩展的分子动力学模拟。

获取原文
获取原文并翻译 | 示例

摘要

While Molecular Dynamics Simulation (MD) uses a large fraction of the world's High Performance Compute cycles, the modeling of many physical phenomena remains far out of reach. Improving the cost-effectiveness of MD has therefore received much attention, especially in using accelerators or modifying the computation itself. While both approaches have demonstrated great potential, scalability has emerged as a critical common challenge. The goal of this research is to study this issue and develop MD solutions that not only achieve substantial acceleration but also remain scalable.;In the first part of this research, we focus on Discrete Molecular Dynamics Simulation (DMD), which achieves high performance by simplifying the underlying computation by converting it into a Discrete Event Simulation (DES). In addition to the inherent serial nature of DES, causality issues make DMD a notorious target for parallelization. We propose a parallel version of DMD that, unlike any previous work, uses task decomposition and efficient synchronization and achieves more than 8.5x speed-up for 3D physical systems on a 12 core processor, with potential for further strong scaling.;The second part of this research focuses on FPGA acceleration of timestep-driven MD. We first enhance an existing FPGA kernel to take advantage of the Block RAM architecture of FPGAs. This results in a 50% improvement in speed-up, without sacrificing simulation quality. We then parallelize the design targeting multiple on-board FPGA cores. We combine this with software pipelining and careful load distribution at the application level to achieve a 3.37x speedup over its CPU counterpart.;In the third part we create a framework that integrates the FPGA accelerator into a prominent MD package called NAMD. This framework allows users to switch between the actual accelerator and a simulated version, and provides a means to study different characteristics, such as the communication pattern, of such an accelerated system. Using this framework, we identify the drawbacks of the current FPGA kernel and provide guidelines for future designs. In addition, the integrated design achieves 2.22x speed-up over a quad-core CPU, making it the first ever FPGA-accelerated full-parallel MD package to achieve a positive end-to-end speed-up.
机译:尽管分子动力学仿真(MD)使用了世界上高性能计算周期的很大一部分,但是许多物理现象的建模仍然遥不可及。因此,提高MD的成本效益受到了广泛的关注,特别是在使用加速器或修改计算本身时。尽管两种方法都显示出巨大的潜力,但可伸缩性已成为一个关键的共同挑战。这项研究的目的是研究这个问题,并开发不仅可以实现实质性加速而且可以保持可扩展性的MD解决方案。在本研究的第一部分中,我们重点研究离散分子动力学仿真(DMD),该技术可以通过以下方法实现高性能通过将其转换为离散事件模拟(DES)来简化基础计算。除了DES固有的串行特性外,因果关系问题还使DMD成为并行化的臭名昭著的目标。我们提出了并行版本的DMD,与以前的工作不同,该版本使用任务分解和有效的同步,并在12核处理器上为3D物理系统实现了8.5倍以上的加速,并具有进一步强大的扩展潜力。本研究的重点是时间步驱动的MD的FPGA加速。我们首先增强现有的FPGA内核,以利用FPGA的Block RAM架构。这样可在不牺牲仿真质量的情况下将速度提高50%。然后,我们并行化针对多个板载FPGA内核的设计。我们将其与软件流水线以及在应用程序级别上仔细的负载分配相结合,以实现其CPU同类产品3.37倍的加速。在第三部分中,我们创建了一个框架,该框架将FPGA加速器集成到了著名的MD软件包NAMD中。该框架允许用户在实际的加速器和模拟版本之间切换,并提供一种研究这种加速系统的不同特征(例如通信模式)的方法。使用此框架,我们可以确定当前FPGA内核的缺点,并为将来的设计提供指导。此外,该集成设计在四核CPU上的速度达到了2.22倍,从而成为有史以来第一个通过FPGA加速的全并行MD封装,从而实现了端到端的正向加速。

著录项

  • 作者

    Khan, Md. Ashfaquzzaman.;

  • 作者单位

    Boston University.;

  • 授予单位 Boston University.;
  • 学科 Engineering Computer.;Engineering Biomedical.;Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 200 p.
  • 总页数 200
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号