首页> 外文学位 >Computational Fluid Dynamics Study of Obstructive Sleep Apnea Syndrome using Static and Quasi-Dynamic Methods in Obese Adolescents.
【24h】

Computational Fluid Dynamics Study of Obstructive Sleep Apnea Syndrome using Static and Quasi-Dynamic Methods in Obese Adolescents.

机译:肥胖青少年使用静态和拟动态方法计算阻塞性睡眠呼吸暂停综合症的流体动力学研究。

获取原文
获取原文并翻译 | 示例

摘要

Obstructive Sleep Apnea Syndrome (OSAS) is a disorder characterized by partial or complete narrowing of the pharynx during sleep, resulting in periods of airflow cessation, oxygen desaturation, and sleep disruption. Both anatomic and physiologic factors affecting upper airway size, shape, and function may play a role in the causation of OSAS. Computational fluid dynamic (CFD) analysis was used to model the effect of airway geometry on internal pressure and velocity in the upper airway of obese adolescents with obstructive sleep apnea syndrome (OSAS). Two separate studies were conducted, both based upon magnetic resonance images (MRI) and flow data: (1) MR images acquired during quiet tidal breathing provided a patient-specific static model of the upper airway in twelve OSAS and twelve control subjects and were solved at the patient-specific maximum inspiratory flow rate using a low-Reynolds number k-o turbulence model; (2) volume-gated MR images acquired during normal tidal breathing at ten volume increments of the respiratory cycle provided a quasi-dynamic view of one OSAS and one control subject and were solved using a low-Reynolds number k-o turbulence model, driven by flow data averaged over 12 consecutive breathing cycles. In addition, rhinomanometry and anatomical volume data was collected to compare against CFD calculations.;In the static study, restricted airways created increased resistance. Pharyngeal and nasopharynx resistance and minimum surface pressure calculations were significantly different between OSAS and control subject groups. Bernoulli's principle was used to calculate nasopharynx resistance given inspiratory flow rate and relevant cross-sectional areas. There was a strong correlation between CFD and Bernoulli's results, validating Bernoulli's principle as accurate candidate nasopharynx resistance calculation method.;In the quasi-dynamic study, collapse in the OSAS initiated in the proximal nasopharynx and continued downstream into the oropharynx. A high velocity turbulent jet, lasting throughout inspiration, was located at the point of initial collapse in the nasopharynx. A second, intensified, high velocity jet formed in the oropharynx during later inspiration. Pharyngeal flow resistance at 10% inspiration was 0.220 kPa/I/s and increased continuously up to 1.725 kPa/I/s at 90% inspiration. Expiratory resistance averaged 0.091 kPa/I/s. Tube laws (pressure vs. cross-section area), derived for different locations along the airway, indicated that the oropharynx was more compliant than the nasopharynx (1.028 mm2/Pa vs. 0.449 mm2/Pa), and had a lower theoretical limiting flow rate, confirming the oropharynx as the flow-limiting segment of the airway in this subject. This new method may help to differentiate anatomical and functional factors in airway collapse.
机译:阻塞性睡眠呼吸暂停综合症(OSAS)是一种以睡眠过程中咽部部分或完全变窄为特征的疾病,导致气流停止,氧饱和度降低和睡眠中断。影响上呼吸道大小,形状和功能的解剖和生理因素都可能在OSAS的起因中起作用。计算流体动力学(CFD)分析用于模拟气道几何形状对阻塞性睡眠呼吸暂停综合症(OSAS)肥胖青少年上呼吸道内部压力和速度的影响。根据磁共振图像(MRI)和血流数据进行了两项单独的研究:(1)在安静的潮气呼吸过程中采集的MR图像为12名OSAS和12名对照受试者提供了上呼吸道的患者特定静态模型,并对其进行了求解使用低雷诺数ko湍流模型以患者特定的最大吸气流速; (2)在正常潮气呼吸期间以十个呼吸周期增量获取的体积门控MR图像提供了一个OSAS和一个控制对象的准动态视图,并使用低雷诺数ko湍流模型进行了求解,该模型由流量驱动连续12个呼吸周期的平均数据。此外,还收集了鼻压力计和解剖体数据,以与CFD计算进行比较。在静态研究中,受限的气道增加了阻力。 OSAS和对照组之间的咽和鼻咽阻力以及最低表面压力计算存在显着差异。给定吸气流速和相关横截面积,使用伯努利原理计算鼻咽阻力。 CFD与Bernoulli的结果之间存在很强的相关性,从而证明了Bernoulli的原理是精确的候选鼻咽阻力计算方法。在准动力学研究中,OSAS的塌陷始于近端鼻咽,并持续向下游进入口咽。持续持续吸气的高速湍流射流位于鼻咽最初塌陷的位置。在后来的吸气过程中,第二次增强的高速射流在口咽部形成。在10%吸气时的咽部流动阻力为0.220 kPa / I / s,在90%吸气时连续增加至1.725 kPa / I / s。呼气阻力平均为0.091 kPa / I / s。沿气道不同位置得出的管律(压力与横截面积的关系)表明,口咽比鼻咽更顺应(1.028 mm2 / Pa对0.449 mm2 / Pa),理论极限流量较低速率,证实口咽是该受试者气道的限流段。这种新方法可能有助于区分气道塌陷的解剖和功能因素。

著录项

  • 作者

    Persak, Steven C.;

  • 作者单位

    The Cooper Union for the Advancement of Science and Art.;

  • 授予单位 The Cooper Union for the Advancement of Science and Art.;
  • 学科 Engineering Biomedical.;Engineering Mechanical.
  • 学位 M.E.
  • 年度 2010
  • 页码 92 p.
  • 总页数 92
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:37:04

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号