首页> 外文学位 >Modeling hydrologic and geochemical effects of rapid infiltration basin systems.
【24h】

Modeling hydrologic and geochemical effects of rapid infiltration basin systems.

机译:模拟快速渗透盆地系统的水文和地球化学效应。

获取原文
获取原文并翻译 | 示例

摘要

Rapid Infiltration Basin Systems (RIBS) use the controlled application of treated wastewater to soil to remove constituents in the wastewater before recharging groundwater. Effluent from most new wastewater treatment plants is enriched in NO3, so denitrification (DNF) is the main reaction for N removal. The absence of molecular oxygen and an adequate supply of carbon to serve as a substrate for heterotrophic bacteria are the required conditions for DNF.;During RIBS operation, wastewater is applied to open basins cyclically, usually with a flooding period followed by days or weeks of drying. Key operational parameters impacting DNF include the ratio of wetting to drying time and the hydraulic loading rate, which affect water saturation and air content in the vadose zone and residence time of contaminants. To investigate effects of complex surface and subsurface flow patterns caused by non-uniform flooding on system performance, a coupled overland flow-vadose zone model is implemented in iTOUGH2 to study the hydraulic performance of RIBS and estimate groundwater mounding under RIBS when wastewater is applied non-uniformly due to overland flow. A simplified approach using a domain-average denitrification reduction factor Fs, is used in iTOUGH2 to assess the impact of pore water saturation on DNF as well. The coupled overland flow-vadose zone model is also applied in TOUGHREACT to investigate effects of operating conditions on the fate and transport of N where two biological reactions are assumed: oxidation of DOC and DNF, which are modeled using multiple Monod expressions. The effect of using a DNF layer, a layer composed of high water holding capacity material and amended with organic carbon solids, on DNF is also investigated. Simulations are conducted in two representative soils varying the application cycle, hydraulic loading rate, wastewater quality, water table depth, and subsurface heterogeneity.;The results with the modified iTOUGH2 computer code, describing the coupled surface-subsurface flow in RIBS, indicate that the conventional specified flux boundary condition underpredicts groundwater mounding by as much as a factor of 25 in loamy sand and a factor of 6 in sand. The impact of basin boundary condition on Fs is less significant, with Fs reduced by up to 50% if the specified flux boundary condition is used. Thus, ignoring overland flow underpredicts DNF and groundwater mounding. Moreover, for a fixed amount of wastewater discharged over a weekly flooding-drying cycle, simulations indicate that longer flooding periods result in less groundwater mounding but a reduction in denitrification.;Simulations with the coupled overland flow-vadose zone model in TOUGHREACT indicate smaller ratios of wetting to drying time, i.e., shorter but more intense flooding periods, result in greater water saturations, shorter residence times and lower oxygen concentrations in the vadose zone, ultimately resulting in greater DNF which is consistent with the iTOUGH2 simulations. Higher loading rates also result in greater DNF because of favored growth of microbial communities at deeper depths. Using a coupled surface-subsurface model is critical for predicting DNF when the hydraulic loading rate is not sufficiently large to quickly spread the wastewater over the whole basin. Simulations using the conventional specified flux boundary condition under-predict DNF by as much as 450% in sand and 230% in loamy sand compared to predictions from the coupled overland flow-vadose zone model. Across all simulations, cumulative percent DNF varies between 2 and 49%, indicating that NO 3 removal in RIBS may vary widely depending on operational procedures and subsurface conditions. These modeling results improve understanding of DNF in RIBS and suggest operational procedures that may improve NO3 removal.;Reactive transport modeling of RIBS using TOUGHREACT when a layer composed of high water holding capacity material and amended with organic carbon solids (DNF layer) is present indicates that in general, a DNF layer improves denitrification by increasing water retention and creating a completely saturated region beneath the RIBs, and by providing additional carbon for DNF. These factors could be important depending on the soil type and biomass inhibition term ( Kˆb =1 versus Kˆb =10 mgL-1). Model predictions with the modified TOUGHREACT computer code, describing the coupled surface-subsurface flow in RIBS, indicate that the conventional specified flux boundary condition underpredicts DNF by up to 20%. Thus, ignoring overland flow underpredicts DNF. Alternative loading rates and application cycles that increase the residence time of the plume in the DNF layer are more effective in DNF. For example, cycle 2, longer loading period but less intense loading rate, results in higher DNF than cycle 1.
机译:快速渗入盆地系统(RIBS)在向地下水补给之前,使用经过处理的废水控制施用于土壤,以去除废水中的成分。大多数新建废水处理厂的废水中都富含NO3,因此反硝化(DNF)是去除N的主要反应。缺乏分子氧和足够的碳供应以用作异养细菌的底物是DNF的必要条件;在RIBS操作期间,废水通常周期性地施用于开阔的水盆,随后是洪水期,随后是几天或几周的时间。烘干。影响DNF的关键操作参数包括润湿时间与干燥时间的比率以及水力加载速率,这会影响水的饱和度和渗流区内的空气含量以及污染物的停留时间。为了研究非均匀淹没引起的复杂地表和地下流动模式对系统性能的影响,在iTOUGH2中建立了一个耦合的陆上渗流-渗流带模型,以研究RIBS的水力性能,并估算在非污水处理情况下RIBS下的地下水堆积情况。 -均匀地由于陆路流量。在iTOUGH2中使用了一种使用域平均反硝化还原因子Fs的简化方法来评估孔隙水饱和度对DNF的影响。在TOUGHREACT中也应用了耦合的陆上流动-渗流带模型,以研究操作条件对N的结局和转运的影响,其中假设了两种生物反应:DOC和DNF的氧化,这是使用多个Monod表达式建模的。还研究了使用DNF层对DNF的影响,DNF层是由高持水能力的材料组成的层,并用有机碳固体改性。在两种具有代表性的土壤中进行了模拟,这些土壤改变了施用周期,水力负荷率,废水质量,地下水位深度和地下非均质性;修改后的iTOUGH2计算机代码的结果描述了RIBS中地面与地下的耦合流动,表明传统的指定通量边界条件低估了壤土中的沙土堆积率高达25倍,而沙土则高达6倍。盆地边界条件对Fs的影响较小,如果使用指定的通量边界条件,则Fs最多降低50%。因此,忽略陆上水流将无法预测DNF和地下水的堆积情况。此外,对于每周浸水-干燥周期中排放的固定数量的废水,模拟表明较长的浸水时间导致较少的地下水堆积,但反硝化作用减少;; TOUGHREACT中的耦合陆上流-渗流带模型的模拟表明比例较小润湿至干燥时间的变化(即较短但更强烈的淹没时间)会导致更大的水饱和度,更短的停留时间以及渗流带中较低的氧气浓度,最终导致更大的DNF,这与iTOUGH2模拟一致。较高的加载速率也会导致更大的DNF,这是由于微生物群落在更深的深度有利生长。当水力负荷率不足以快速将废水扩散到整个流域时,使用地下-地下耦合模型对于预测DNF至关重要。与基于耦合的陆上流-流带区模型的预测相比,使用常规的指定通量边界条件进行的模拟预测的DNF最高可测出砂中DNF高达450%,而壤土中高达230%。在所有模拟中,DNF的累积百分比在2%到49%之间变化,这表明RIBS中的NO 3去除率可能会因操作程序和地下条件的不同而有很大差异。这些建模结果可增进对RIBS中DNF的理解,并建议可改善NO3去除的操作程序。当存在由高持水量的材料组成的层并经有机碳固体修饰的层(DNF层)存在时,使用TOUGHREACT进行RIBS的反应性运输建模表明通常,DNF层可通过增加保水率并在RIB下方创建一个完全饱和的区域以及为DNF提供额外的碳来改善反硝化作用。根据土壤类型和生物量抑制项,这些因素可能很重要(Kˆb = 1对Kˆb = 10 mgL-1)。使用修改后的TOUGHREACT计算机代码进行的模型预测(描述了RIBS中的表面-地下流动耦合)表明,传统的指定通量边界条件预测的DNF最高降低了20%。因此,忽略陆流会低估DNF。在DNF中,增加羽流在DNF层中停留时间的替代加载速率和应用周期更有效。例如,周期2的加载时间较长,但加载速率较弱,导致DNF高于周期1。

著录项

  • 作者

    Akhavan, Maryam.;

  • 作者单位

    University of Delaware.;

  • 授予单位 University of Delaware.;
  • 学科 Engineering Geological.;Engineering Environmental.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 210 p.
  • 总页数 210
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号