首页> 外文学位 >Development of a two-color optical diagnostic for the determination of engine in-cylinder soot temperature and volume fraction evolution with a flame-calibrated emissivity model.
【24h】

Development of a two-color optical diagnostic for the determination of engine in-cylinder soot temperature and volume fraction evolution with a flame-calibrated emissivity model.

机译:开发了一种用于通过火焰校准的发射率模型确定发动机缸内烟灰温度和体积分数演变的双色光学诊断仪。

获取原文
获取原文并翻译 | 示例

摘要

A fundamental understanding of advanced compression ignition combustion is requisite to meet the simultaneous challenges of stringent fuel efficiency and emission standards. Single zone simulation shows that nitrogen oxide (NOx) production occurs in a high temperature region and soot production in a high equivalence ratio region within a specific temperature window. Combustion temperature, therefore, is a crucial variable that determines soot and NOx emissions under various combustion modes, and it is thus very important to have the capability to quantify this parameter in-cylinder. Optical diagnostic techniques such as—Rayleigh scattering, filtered Raman scattering (Doppler), Raman scattering, coherent anti-stokes Raman spectroscopy (CARS), vibrational thermally-assisted fluorescence, two-line atomic fluorescence, two-line molecular fluorescence, chemiluminescence emission, absorption thermometry and soot two-color thermometry—commonly provide the sole means of non-intrusively investigating flame temperature. However, significant challenges of diesel combustion, such as temporal and spatial flame heterogeneity, interference from particle-scattering, background combustion illumination, and the limitations imposed by laser repetition rates hinder the utilization of most of these diagnostics. The final technique, soot two-color thermometry, is less affected by the above factors, and therefore, has been widely utilized in diesel engine studies. This work presents an approach to implement the classic soot classic two-color thermometry technique on a high-speed digital color camera to realize crank-angle-resolved, spatial distribution of in-cylinder combustion temperature. A comparison is made between high-speed two-color thermometry measurements and reacting flow simulations in an engine application fueled with ULSD. The results show the simulations over-estimate soot temperature by 10%-20% in most crank angle intervals. To improve the two-color thermometry technique, a soot emissivity model is developed by incorporating soot optical properties and CARS and laser-induced incandescence (LII) data obtained from a rich (&PHgr;=2.1), C2H4 / Air premixed flat calibration flame. With the flame-calibrated soot emissivity model, the in-cylinder soot temperature error between simulation and experiment decreases to ±5% implying an improvement of the soot two-color thermometry technique. The limitations of line-of-sight two-color thermometry are investigated by comparing the in-cylinder soot optical thickness KL with simultaneous soot laser-induced incandescence (LII) measurements in an optical engine. The results exhibit significant spatial differences, implying temperature gradient along the line of sight.
机译:对先进的压缩点火燃烧有基本的了解是满足严格的燃油效率和排放标准的同时要求。单区模拟显示在特定温度窗口内,高温区域会产生氮氧化物(NOx),而高当量比区域会产生烟灰。因此,燃烧温度是决定各种燃烧模式下烟尘和NOx排放的关键变量,因此具有量化缸内此参数的能力非常重要。光学诊断技术,例如瑞利散射,滤波拉曼散射(多普勒),拉曼散射,相干反焦拉曼光谱(CARS),振动热辅助荧光,两线原子荧光,两线分子荧光,化学发光,吸收测温法和烟灰二色测温法通常是非侵入式研究火焰温度的唯一方法。但是,柴油机燃烧的重大挑战(例如时间和空间火焰异质性,来自粒子散射的干扰,背景燃烧照明以及激光重复频率带来的限制)阻碍了大多数这些诊断方法的使用。烟灰二色测温法是最后的技术,受上述因素的影响较小,因此已广泛用于柴油机研究中。这项工作提出了一种在高速数字彩色相机上实现经典烟灰经典两色测温技术的方法,以实现曲轴角分辨的缸内燃烧温度的空间分布。在以ULSD为燃料的发动机应用中,对高速双色测温测量与反应流模拟进行了比较。结果表明,在大多数曲柄角间隔内,模拟结果高估了烟灰温度10%-20%。为了改进双色测温技术,通过结合烟灰的光学特性和CARS以及从浓(PHgr == 2.1),C2H4 /空气预混合的扁平校准火焰获得的激光诱导白炽度(LII)数据,开发了烟灰发射率模型。使用火焰校准的烟灰发射率模型,模拟和实验之间的缸内烟灰温度误差降低到±5%,这意味着烟灰双色测温技术得到了改进。通过比较缸内碳黑光学厚度KL和光学引擎中同时进行的碳黑激光诱导白炽度(LII)测量,来研究视线双色测温法的局限性。结果显示出显着的空间差异,这意味着沿视线的温度梯度。

著录项

  • 作者

    Zha, Kan.;

  • 作者单位

    Wayne State University.;

  • 授予单位 Wayne State University.;
  • 学科 Engineering General.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 154 p.
  • 总页数 154
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:41:00

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号