首页> 外文学位 >DNA-Mediated Charge Transport for Long-Range Sensing and Protein Detection.
【24h】

DNA-Mediated Charge Transport for Long-Range Sensing and Protein Detection.

机译:DNA介导的电荷传输,可进行远距离传感和蛋白质检测。

获取原文
获取原文并翻译 | 示例

摘要

The structural core of DNA, a continuous stack of aromatic heterocycles---the base pairs---that extends down the helical axis, gives rise to the fascinating electronic properties of this molecule that is so critical for life. This pi-stacked structure facilitates a unique form of charge conduction, termed DNA-mediated charge transport (DNA CT). Experiments with diverse platforms, in solution, on surfaces, and with single molecules, collectively provide a broad and consistent perspective on the essential characteristics of this chemistry. Notably, DNA CT can proceed over long molecular distances, but is remarkably sensitive to perturbations in base pair stacking. These characteristics suggest that DNA CT may be used for long-range sensing both in nature and in nanoelectronic applications. Here, measurements of DNA CT with surface and single molecule platforms are used to (i) determine how ground state DNA CT varies over regimes of increasing distance and (ii) apply this chemistry to the electrical detection of DNA-binding proteins.;First, the design and fabrication of multiplexed, DNA-modified electrodes on silicon chips is reported. These lithographically patterned chips with 16 individually addressable gold electrodes allow for the measurement of DNA CT with four different types of DNA, side by side on the same surface, with four-fold redundancy. Discrimination of DNA with a single base mismatch and detection of sequence-specific restriction enzyme activity are both achieved with these chips. Scaling of these devices to microelectrode dimensions is also demonstrated. Importantly, these chips show greater reproducibility and consistency than commercially available rod electrodes. This greater signal quality, combined with the capacity to examine different samples side by side, opens the door for more complex applications of this platform.;The fully developed, multiplexed chips are first used to compare DNA CT over short and long distance regimes. DNA is evaluated in this context because the efficacy of a long-range sensor, in either nature or nanoelectronics, is determined largely by its capacity to facilitate CT in a manner that is minimally affected by the CT distance. DNA CT over 34 nm in 100-mer monolayers is found to yield electrochemical signals that are comparable in size to shorter 17-mer DNA. Signal attenuation from a single base-pair mismatch in the 100-mer is also comparable to that for 17-mers, and confirms that CT in these 100-mer films is DNA-mediated. Efficient cleavage by a restriction enzyme indicates that the 100-mer DNA adopts a native, upright conformation. The alkanethiol linker used to anchor the DNA to the electrode is found to limit the electron-transfer rate for both DNA lengths. Thus the impact of increasing the CT distance on DNA CT is too small to be resolved by this platform, even over 34 nm. These measurements put DNA among the longest and most conductive molecular wires reported to date.;Next, DNA CT with multiplexed chips is extended to the electrochemical detection of methyltransferases, proteins that are attractive targets because of their prominent role in the initial stages of many types of cancer. Electrochemical detection of binding and activity by these proteins is achieved by two different methods. First, DNA-binding and base-flipping by these proteins disrupts the DNA pi-stack and may be used for direct "signal OFF" detection. Using this method, the concentration- and cofactor- dependence of SssI methyltransferase, the bacterial analog of human methyltransferases, are examined. Second, methylation-conferred protection of DNA against cutting by a restriction enzyme may be used for "signal ON" detection of methyltransferase activity. With this approach, the use of both unmethylated and hemimethylated DNA substrates is demonstrated for the sensitive detection of both bacterial (Sss I) and human (Dnmt1) methyltransferase activity.;Alongside work with this surface, electrochemical platform, a single molecule, carbon nanotube-DNA (CNT-DNA) platform is also used to evaluate DNA CT over increasing distances and to detect protein binding. CNT-DNA devices consist of a single molecule of DNA that is made to bridge a gap cut in a CNT covalently, such that current flow through the device is DNA-mediated. Upon introduction of DNA bridges of varying length, the device resistance is minimally affected, echoing the result of long distance electrochemistry experiments. These devices are also used to detect SssI methyltransferase binding by the direct "signal OFF" method used with multiplexed chips; DNA-binding and base-flipping disrupts DNA CT and shuts off current flow through the device. CNT-DNA devices are used to electronically measure the sequence-specific, cofactor-dependent, and reversible binding of SssI. DNA methylation catalyzed by SssI is also detected based on its alteration of the protein-binding affinity of the device. This detection approach represents a unique strategy for the specific, single molecule detection of protein binding and activity. (Abstract shortened by UMI.).
机译:DNA的结构核心是芳香族杂环(碱基对)的连续堆栈,沿着螺旋轴向下延伸,产生了对该分子至关重要的引人入胜的电子特性,这对于生命至关重要。这种π堆叠结构促进了电荷传导的独特形式,称为DNA介导的电荷传输(DNA CT)。在溶液中,在表面上以及在单个分子上使用各种平台进行的实验共同为该化学的基本特征提供了广泛而一致的观点。值得注意的是,DNA CT可以在较长的分子距离上进行,但对碱基对堆积中的扰动非常敏感。这些特征表明,DNA CT可以用于自然界和纳米电子领域的远距离传感。在这里,利用表面和单分子平台对DNA CT的测量被用于(i)确定基态DNA CT在距离增加的情况下如何变化,以及(ii)将这种化学方法应用于DNA结合蛋白的电学检测。据报道,在硅芯片上设计和制造了多重的,DNA修饰的电极。这些具有16个可单独寻址的金电极的光刻图案化芯片可用于在同一表面上并排具有四种不同冗余度的四种不同类型的DNA进行DNA CT测量。这些芯片可实现单碱基错配的DNA识别和序列特异性限制性内切酶活性的检测。还演示了将这些设备缩放至微电极尺寸。重要的是,这些芯片比市售的棒状电极具有更高的重现性和一致性。这种更高的信号质量,加上并排检查不同样品的能力,为该平台的更复杂应用打开了大门。全面开发的多路复用芯片首先用于在短距离和长距离范围内比较DNA CT。在这种情况下评估DNA的原因在于,无论是自然电子还是纳米电子技术,远程传感器的功效主要取决于其以最小程度受CT距离影响的方式促进CT的能力。发现100个分子的单层膜中超过34 nm的DNA CT产生的电化学信号的大小与较短的17个分子的DNA相当。 100个单体中单个碱基对错配引起的信号衰减也可与17个单体中的碱基衰减相媲美,这证实了这100个单体膜中的CT是DNA介导的。限制性酶的有效切割表明100聚体DNA采用天然的,直立的构象。发现用于将DNA锚定在电极上的烷硫醇接头限制了两种DNA长度的电子转移速率。因此,增加CT距离对DNA CT的影响很小,即使在34 nm以上也无法被该平台解决。这些测量使DNA成为迄今为止报道的最长和最导电的分子线。接着,具有多重芯片的DNA CT扩展到了电化学检测甲基转移酶,这些蛋白质由于在许多类型的初始阶段起着重要作用而成为有吸引力的靶标。癌症。这些蛋白质的结合和活性的电化学检测是通过两种不同的方法实现的。首先,这些蛋白质对DNA的结合和碱基翻转会破坏DNA的pi堆栈,可用于直接的“信号关闭”检测。使用这种方法,检查了人甲基转移酶的细菌类似物SssI甲基转移酶的浓度和辅因子依赖性。第二,赋予甲基化以保护DNA免受限制酶切割的保护可用于甲基转移酶活性的“信号ON”检测。通过这种方法,已证明可以同时使用未甲基化和半甲基化的DNA底物来灵敏地检测细菌(Sss I)和人(Dnmt1)甲基转移酶的活性。;与该表面,电化学平台,单分子,碳纳米管一起工作-DNA(CNT-DNA)平台还可用于评估距离越来越远的DNA CT并检测蛋白质结合。 CNT-DNA装置由一个单分子DNA组成,该分子被制成可以共价桥接CNT中的缺口,因此流经该装置的电流是DNA介导的。引入不同长度的DNA桥后,器件电阻受到的影响最小,与长距离电化学实验的结果相呼应。这些设备还可以通过与多路复用芯片一起使用的直接“信号关闭”方法来检测SssI甲基转移酶的结合。 DNA结合和碱基翻转会破坏DNA CT,并切断通过该设备的电流。 CNT-DNA设备用于电子测量序列特异性,辅因子依赖性,以及SssI的可逆绑定。基于SssI催化的DNA甲基化也可以根据其对蛋白质结合亲和力的改变进行检测。这种检测方法代表了一种特异性,单分子检测蛋白质结合和活性的独特策略。 (摘要由UMI缩短。)。

著录项

  • 作者

    Muren, Natalie Bloom.;

  • 作者单位

    California Institute of Technology.;

  • 授予单位 California Institute of Technology.;
  • 学科 Organic chemistry.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 219 p.
  • 总页数 219
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号